Citation: | Jacky Cao, Xiaoli Liu, Xiang Su, Jonas Eilertsen Hædahl, Thomas Berg Fjellestad, Donjete Haziri, André Hoang-An Vu, Jari Koskiaho, Satu Maaria Karjalainen, Anna-kaisa Ronkanen, Sasu Tarkoma, Pan Hui. 2024: Head-mounted display-based augmented reality for water quality visualisation. Water Science and Engineering, 17(3): 236-248. doi: 10.1016/j.wse.2023.12.002 |
Team Aventior, 2020. Object Detection of Water Bodies. Aventior.
|
Azuma, R.T., 1997. A survey of augmented reality. Presence Teleoperators Virtual Environ. 6(4), 355-385. https://doi.org/10.1162/pres.1997.6.4.355.
|
Biswas, A.K., Tortajada, C., 2019. Water quality management: A globally neglected issue. Int. J. Water Resour. Dev. 35, 913-916. https://doi.org/10.1080/07900627.2019.1670506.
|
Bloschl, G., Bierkens, M.F.P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, JW., McDonnell, J.J., Savenije, H.H.G., Sivapalan, M., et al., 2019. Twenty-three unsolved problems in hydrology (UPH) - a community perspective. Hydrol. Sci. J. 64(10), 1141-1158. https://doi.org/10.1080/02626667.2019.1620507.
|
Cham, H., Malek, S., Milow, P., Ramli, M.R., 2020. Web-based system for visualisation of water quality index. Life 13(1), 426-432. https://doi.org/10.1080/26895293.2020.1788998.
|
Destouni, G., Jaramillo, F., Prieto, C., 2013. Hydroclimatic shifts driven by human water use for food and energy production. Nat. Clim. Change 3, 213-217. https://doi.org/10.1038/nclimate1719.
|
Doughty, M., Ghugre, N.R., 2022. Head-mounted display-based augmented reality for image-guided media delivery to the heart: A preliminary investigation of perceptual accuracy. J. Imag. 8(2), 33. https://doi.org/10.3390/jimaging8020033.
|
Frazier, P.S., Page, K.J., 2000. Water body detection and delineation with Landsat TM data. Photogramm. Eng. Rem. Sens. 66(12), 1461-1468.
|
Goldsmith, D., Liarokapis, F., Malone, G., Kemp, J., 2008. Augmented reality environmental monitoring using wireless sensor networks. In: Proceedings of the 2008 12th International Conference Information Visualisation. IEEE, London, pp., 539-544. https://doi.org/10.1109/iv.2008.72.
|
Google, 2023. Get Started | Maps Static API | Google Developers. Google, Mountain View. https://developers.google.com/maps/documentation/maps-static/start.
|
Gray, A., Robertson, C., Feick, R., 2021. CWDAT-An open-source tool for the visualization and analysis of community-generated water quality Data. ISPRS Int. J. Geo-Inf. 10(4), 207. https://doi.org/10.3390/ijgi10040207.
|
Gul, M.U., Paul, A., Manimurugan, S., Chehri, A., 2023. Hydrotropism: Understanding the impact of water on plant movement and adaptation. Water 15(3), 567. https://doi.org/10.3390/w15030567.
|
Haynes, P., Hehl-Lange, S., Lange, E., 2018. Mobile augmented reality for flood visualisation. Environ. Model. Software 109, 380-389. https://doi.org/10.1016/j.envsoft.2018.05.012.
|
Hirsh, M.B., Baron, J.L., Mietzner, S.M., Rihs, J.D., Yassin, M.H., Stout, J.E., 2020. Evaluation of recommended water sample collection methods and the impact of holding time on legionella recovery and variability from healthcare building water systems. Microorganisms 8(11), 1770. https://doi.org/10.3390/microorganisms8111770.
|
Horsburgh, J.S., Reeder, S.L., Jones, A.S., Meline, J., 2015. Open source software for visualization and quality control of continuous hydrologic and water quality sensor data. Environ. Model. Software 70, 32-44. https://doi.org/10.1016/j.envsoft.2015.04.002.
|
Kawagoshi, Y., Suenaga, Y., Chi, N.L., Hama, T., Ito, H., Duc, L.V., 2019. Understanding nitrate contamination based on the relationship between changes in groundwater levels and changes in water quality with precipitation fluctuations. Sci. Total Environ. 657, 146-153. https://doi.org/10.1016/j.scitotenv.2018.12.041.
|
Kritzberg, E.S., Hasselquist, E.M., Skerlep, M., Lofgren, S., Olsson, O., Stadmark, J., Valinia, S., Hansson, L.A., Laudon, H., 2020. Browning of freshwaters: Consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio 49, 375-390. https://doi.org/10.1007/s13280-019-01227-5.
|
Li, W., Zhang, W., Li, Z., Wang, Y., Chen, H., Gao, H., Zhou, Z., Hao, J., Li, C., Wu, X., 2022. A new method for surface water extraction using multi-temporal Landsat 8 images based on maximum entropy model. Eur. J. Rem. Sens 55(1), 303-312. https://doi.org/10.1080/22797254.2022.2062054.
|
Lindqvist, A.N., Fornell, R., Prade, T., Tufvesson, L., Khalil, S., Kopainsky, B., 2021. Human-water dynamics and their role for seasonal water scarcity - a case study. Water Resour. Manag. 35, 3043-3061. https://doi.org/10.1007/s11269-021-02819-1.
|
Lloyd, C., Freer, J., Johnes, P., Collins, A., 2016. Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments. Sci. Total Environ. 543, 388-404. https://doi.org/10.1016/j.scitotenv.2015.11.028.
|
Mach, P., Becvar, Z., 2017. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628-1656. https://doi.org/10.1109/comst.2017.2682318.
|
Manz, B.J., Rodriguez, J.P., Maksimovic, C., McIntyre, N., 2013. Impact of rainfall temporal resolution on urban water quality modelling performance and uncertainties. Water Sci. Technol. 68(1), 68-75. https://doi.org/10.2166/wst.2013.224.
|
Marttila, H., Lepisto, A., Tolvanen, A., Bechmann, M., Kyllmar, K., Juutinen, A., Wenng, H., Skarboevik, E., Futter, M., Kortelainen, P., et al., 2020. Potential impacts of a future Nordic bioeconomy on surface water quality. Ambio 49, 1722-1735. https://doi.org/10.1007/s13280-020-01355-3.
|
Maure, E.R., Terauchi, G., Ishizaka, J., Clinton, N., DeWitt, M., 2021. Globally consistent assessment of coastal eutrophication. Nat. Commun. 12, 6142. https://doi.org/10.1038/s41467-021-26391-9.
|
Microsoft, 2022a. Color, Light, and Materials - Mixed Reality. Microsoft. https://learn.microsoft.com/en-us/windows/mixed-reality/design/color-light-and-materials.
|
Microsoft, 2022b. HoloLens 2 - Overview, Features, and Specs | Microsoft HoloLens. Microsoft. https://www.microsoft.com/en-us/hololens/hardware.
|
Microsoft, 2022c. MRTK2 - Unity Developer Documentation - MRTK 2. Microsoft. https://learn.microsoft.com/en-us/windows/mixed-eality/mrtk-unity/mrtk2/.
|
Milgram, P., Kishino, F., 1994. A taxonomy of mixed reality visual displays. IEICE Trans. Info Syst. E77-D (12), 1321-1329.
|
Miller, L., 2018. Recognition and Outlining a Lake with Opencv and python. GitHub. https://github.com/lmiller1990/python-opencv-lake-recognition.
|
Mirauda, D., Erra, U., Agatiello, R., Cerverizzo, M., 2017. Applications of mobile augmented reality to water resources management. Water 9(9), 699. https://doi.org/10.3390/w9090699.
|
Mishra, V., Limaye, A.S., Muench, R.E., Cherrington, E.A., Markert, K.N., 2020. Evaluating the performance of high-resolution satellite imagery in detecting ephemeral water bodies over West Africa. Int. J. Appl. Earth Obs. Geoinf. 93, 102218. https://doi.org/10.1016/j.jag.2020.102218.
|
Nachimuthu, G., Watkins, M.D., Hulugalle, N., Finlay, L.A., 2020. Storage and initial processing of water samples for organic carbon analysis in runoff. MethodsX 7, 101012. https://doi.org/10.1016/j.mex.2020.101012.
|
Nayebi, F., Desharnais, J.M., Abran, A., 2012. The state of the art of mobile application usability evaluation. In: Proceedings of the 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). CCECE, Montreal, pp. 1-4. https://doi.org/10.1109/ccece.2012.6334930.
|
Nicolaidis Lindqvist, A., Fornell, R., Prade, T., Khalil, S., Tufvesson, L., Kopainsky, B., 2022. Impacts of future climate on local water supply and demand - a socio-hydrological case study in the Nordic region. J. Hydrol.: Reg. Stud. 41, 101066. https://doi.org/10.1016/j.ejrh.2022.101066.
|
Park, J., Kim, K.T., Lee, W.H., 2020. Recent advances in information and communications technology (ICT) and sensor technology for monitoring water quality. Water 12(2), 510. https://doi.org/10.3390/w12020510.
|
Peterson, K.T., Sagan, V., Sloan, J.J., 2020. Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing. GIScience Remote Sens. 57(4), 510-525. https://doi.org/10.1080/15481603.2020.1738061.
|
Pokric, B., Krco, S., Drajic, D., Pokric, M., Rajs, V., Mihajlovic, Z., Knezevic, P., Jovanovic, D., 2015. Augmented reality enabled IoT services for environmental monitoring utilising serious gaming concept. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl. 6(1), 37-55.
|
Pope, M.L., Bussen, M., Feige, M.A., Shadix, L., Gonder, S., Rodgers, C., Chambers, Y., Pulz, J., Miller, K., Connell, K., Standridge, J., 2003. Assessment of the effects of holding time and temperature on Escherichia coli densities in surface water samples. Appl. Environ. Microbiol. 69(10), 6201-6207. https://doi.org/10.1128/AEM.69.10.6201-6207.2003.
|
Rode, M., Wade, A.J., Cohen, M.J., Hensley, R.T., Bowes, M.J., Kirchner, J.W., Arhonditsis, G.B., Jordan, P., Kronvang, B., Halliday, S.J., et al., 2016. Sensors in the stream: The high-frequency wave of the present. Environ. Sci. Technol. 50, 10297-10307. https://doi.org/10.1021/acs.est.6b02155.
|
Sarp, G., Ozcelik, M., 2017. Water body extraction and change detection using time series: A case study of lake Burdur, Turkey. J. Taibah Univ. Sci. 11(3), 381-391. https://doi.org/10.1016/j.jtusci.2016.04.005.
|
Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., Von Gunten, U., Wehrli, B., 2010. Global water pollution and human health. Annu. Rev. Environ. Resour. 35, 109-136. https://doi.org/10.1146/annurev-environ-100809-125342.
|
Selvakumar, A., Borst, M., Boner, M., Mallon, P., 2004. Effects of sample holding time on concentrations of microorganisms in water samples. Water Environ. Res. 76(1), 67-72.
|
Speicher, M., Hall, B.D., Nebeling, M., 2019. What is mixed reality? In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, pp. 1-15. https://doi.org/10.1145/3290605.3300767.
|
Veas, E., Grasset, R., Ferencik, I., Grunewald, T., Schmalstieg, D., 2013. Mobile augmented reality for environmental monitoring. Personal Ubiquitous Comput. 17, 1515-1531. https://doi.org/10.1007/s00779-012-0597-z.
|
Xu, H., Berres, A., Liu, Y., Allen-Dumas, M.R., Sanyal, J., 2022. An overview of visualization and visual analytics applications in water resources management. Environ. Model. Software 153, 105396. https://doi.org/10.1016/j.envsoft.2022.105396.
|
Yao, J., Sun, S., Zhai, H., Feger, K.H., Zhang, L., Tang, X., Li, G., Wang, Q., 2022. Dynamic monitoring of the largest reservoir in north China based on multi-source satellite remote sensing from 2013 to 2022: Water area, water level, water storage and water quality. Ecol. Indicat. 144, 109470. .
|
Zhang, D., Adipat, B., 2005. Challenges, methodologies, and issues in the usability testing of mobile applications. Int. J. Hum. Comput. Interact. 18(3), 293-308. https://doi.org/10.1207/s15327590ijhc1803_3.
|
Zhang, Q., Miao, L., Wang, H., Hou, J., Li, Y., 2020. How rapid urbanization drives deteriorating groundwater quality in a provincial capital of China. Pol. J. Environ. Stud. 29(1), 441-450. https://doi.org/10.15244/pjoes/103359.
|