Volume 17 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Reza Haririyan Javan, Mirmehdi Seyyedi, Bita Ayati. 2024: Evaluation of treatment and energy efficiencies of an advanced electrochemical system for Chlorella removal equipped with aluminum, graphite, and RGO nanoparticles-coated cathodes. Water Science and Engineering, 17(4): 378-387. doi: 10.1016/j.wse.2023.12.004
Citation: Reza Haririyan Javan, Mirmehdi Seyyedi, Bita Ayati. 2024: Evaluation of treatment and energy efficiencies of an advanced electrochemical system for Chlorella removal equipped with aluminum, graphite, and RGO nanoparticles-coated cathodes. Water Science and Engineering, 17(4): 378-387. doi: 10.1016/j.wse.2023.12.004

Evaluation of treatment and energy efficiencies of an advanced electrochemical system for Chlorella removal equipped with aluminum, graphite, and RGO nanoparticles-coated cathodes

doi: 10.1016/j.wse.2023.12.004
  • Received Date: 2022-12-23
  • Accepted Date: 2023-11-29
  • Advanced material sciences and technologies can help to address environmental challenges in order to achieve sustainable development goals by developing innovative materials capable of mitigating energy consumption in treatment systems. In this study, an innovative electrocoagulation unit for algae removal was optimized, and the effects of various variables, including novel cathode materials (i.e., graphite and reduced graphene oxide nanoparticles), on treatment efficiency and energy consumption were evaluated. Reduced graphene oxide nanoparticles were synthesized and then immobilized on the graphite cathode surface with the modified Hummer's method. Stabilization of nanoparticles was achieved with polytetrafluoroethylene. The use of the reduced graphene oxide nanoparticles-coated cathode led to a significant decrease (42.93%) in energy consumption, compared to the case with an aluminum cathode. In the optimum conditions (a current density of 3 mA/cm2, an electrolyte concentration of 2 g/L, an electrode surface area of 56 cm2, a processing time of 60 min, and a sedimentation time of 30 min), the novel electrocoagulation unit, equipped with an aluminum anode and a reduced graphene oxide nanoparticles-coated cathode electrode, achieved removal efficiencies of 72.69% for Chlorella species and 72.96% for turbidity.

     

  • loading
  • Abdelkader, A.M., Fray, D.J., 2017. Controlled electrochemical doping of graphene-based 3D nanoarchitecture electrodes for supercapacitors and capacitive deionisation. Nanoscale 38(9), 14548. https://doi.org/10.1039/C7NR04229A.
    Abedi, M., Xu, T., Klausner, J.F., Benard, A., 2023. Solar desalination chimneys: Investigation on the feasibility of integrating solar chimneys with humidification-dehumidification systems. Renew. Energ. 202, 88-102. https://doi.org/10.1016/j.renene.2022.11.069.
    Ahlawat, R., Srivastava, V.C., Mall, I.D., Sinha, S., 2008. Investigation of the electrocoagulation treatment of cotton blue dye solution using aluminum electrodes. Clean Soil Air Water 36(10-11), 863-869. https://doi.org/10.1002/clen.200800019.
    Azarian, G.H., Mesdaghinia, A.R., Vaezi, F., Nabizadeh, R., Nematollahi, D., 2007. Algae removal by electro-coagulation process, application for treatment of the effluent from an industrial wastewater treatment plant. Iran. J. Public Health 36(4), 57-64.
    Bazrafshan, E., Alipour, M.R., Mahdavi, A.H., 2016. Textile wastewater treatment by application of combined chemical coagulation, electrocoagulation, and adsorption processes. Desalin. Water Treat. 57(20), 9203-9215. https://doi.org/10.1080/19443994.2015.1027960.
    Benhadji, A., Ahmed, M.T., Maachi, R., 2011. Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouiba. Desalination 227, 128-134. https://doi.org/10.1016/j.desal.2011.04.014.
    Canizares, P., Martinez, F., Lobato, J., Rodrigo, M.A., 2007. Break-up of oil-in-water emulsions by electrochemical techniques. J. Hazard. Mater. 145(1-2), 223-240. https://doi.org/10.1016/j.jhazmat.2006.11.018.
    Chowdhury, S., Balasubramanian, R., 2014. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv. Colloid Interface Sci. 204, 35-56. https://doi.org/10.1016/j.cis.2013.12.005.
    Dong, Y., Qu, Y., Li, C., Han, X., Ambuchi, J.J., Liu, J., Yu, Y., Feng, Y., 2017. Simultaneous algae-polluted water treatment and electricity generation using a biocathode-coupled electrocoagulation cell (bio-ECC). J. Hazard. Mater. 340, 104-112. https://doi.org/10.1016/j.jhazmat.2017.06.055.
    Faruqi, A., Henderson, M., Henderson, R.K., Stuetz, R., Gladman, B., McDowal, B., Zamyadi, A., 2019. Removal of algae taste and odour compounds by granular and biological activated carbon in full-scale water treatment plants. Water Supply 18(5), 1531-1544. https://doi.org/10.2166/ws.2018.001.
    Gao, S., Du, M., Tian, J., Yang, J., Ma, F., Nan, J., 2010a. Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal. J. Hazard. Mater. 182(1-3), 827-834. https://doi.org/10.1016/j.jhazmat.2010.06.114.
    Gao, S., Yang, J., Tian, J., Ma, F., Tu, G., Du, M., 2010b. Electro-coagulation-flotation process for algae removal. J. Hazard. Mater. 177(1-3), 336-343. https://doi.org/10.1016/j.jhazmat.2009.12.037.
    Garcia-Segura, S., Eiband, M.M.S., de Melo, J.V., Martinez-huitle, C.A., 2017. Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. J. Electroanal. Chem. 801, 267-299. https://doi.org/10.1016/j.jelechem.2017.07.047.
    Ghernaout, B., Ghernaout, D., Saiba, A., 2010. Algae and cyanotoxins removal by coagulation/flocculation: A review. Desalin. Water Treat. 20(1-3), 133-143. https://doi.org/10.5004/dwt.2010.1202.
    Ghernaout, D., Alshammari, Y., Alghamdi, A., Aichouni, M., Touahmia, M., Messaoudene, N.A., 2018. Water reuse: Extenuating membrane fouling in membrane processes. Am. J. Chem. Eng. 6(2), 25-36. https://doi.org/10.11648/j.ajche.20180602.12.
    Ghernaout, D., Elboughdiri, N., 2020. Eliminating cyanobacteria and controlling and controlling algal organic matter-Short notes. Open Access Libr. J. 7, e6252. https://doi.org/10.4236/oalib.1106252.
    Gholami, A.A., Bahrami, S.H., Arami, M., Pajootan, E., 2017. Photocatalytic dye removal using GO-TiO2 modified electrode and optimization by RSM. J. Color Sci. Technol. 11(3), 187-202.
    Gholikandi, G.B., Ardakani, M.N., Moradi, F., 2018. Fered-Fenton technology for efficient waste-activated sludge stabilization: Determination of the main specifications and optimization of the energy consumption. J. Environ. Chem. Eng. 6(1), 1546-1557. https://doi.org/10.1016/j.jece.2018.01.071.
    Gosling, J.H., Makarovsky, O., Wang, F., Cottam, N.D., Greenaway, M.T., Patane, A., Wildman, R.D., Tuck, C.J., Turyanska, L., Fromhold, T.M., 2021. Universal mobility characteristics of graphene originating from charge scattering by ionized impurities. Commun. Phys. 4(1), 30. https://doi.org/10.1038/s42005-021-00518-2.
    Guldhe, A., Misra, R., Singh, P., Rawat, I., Bux, F., 2016. An innovative electrochemical process to alleviate the challenge for harvesting small size microalgae by using non-sacrificial carbon electrodes. Algal Res. 19, 292-298. https://doi.org/10.1016/j.algal.2015.08.014.
    Khataee, A., Akbarpour, A., Vahid, B., 2014. Photoassisted electrochemical degradation of an azo dye using Ti/RuO2 anode and carbon nanotubes containing gas-diffusion cathode. J. Taiwan Inst. Chem. Eng. 45(3), 930-936. https://doi.org/10.1016/j.jtice.2013.08.015.
    Khemis, M., Tanguy, G., Leclerc, J.P., Valentin, G., Lapicque, F., 2005. Electrocoagulation for the treatment of oil suspensions; relations between the rates of electrode reactions and the efficiency of the waste removal. Process Saf. Environ. Prot. 83, 50-57. https://doi.org/10.1205/psep.03381.
    Lee, W.J., Pyun, S.I., 1999. Effects of hydroxide ion addition on anodic dissolution of pure aluminium in chloride ion-containing solution. Electrochim. Acta 44(23), 4041-4049. https://doi.org/10.1016/S0013-4686(99)00164-4.
    Li, X., Feng, J., Du, Y., Bai, J., Fan, H., Zhang, H., Peng, Y., Li, F., 2015. One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3(10), 5535-5546. https://doi.org/10.1039/C4TA05718J.
    Malik, R., Tomer, V.K., Chaudhary, V., 2019. Chapter 16 - Hybridized graphene for chemical sensing. In: Jawaid, M., Bouhfid, R., Qaiss, A.K. (Eds.), Functionalized Graphene Nanocomposites and Their Derivatives. Elsevier, Amsterdam, pp. 323-338. https://doi.org/10.1016/B978-0-12-814548-7.00016-7.
    Martinez-Huitle, C.A., Brillas, E., 2021. A critical review over the electrochemical disinfection of bacteria in synthetic and real wastewaters using a boron-doped diamond anode. Curr. Opin. Solid State Mater. Sci. 25(4), 100926. https://doi.org/10.1016/j.cossms.2021.100926.
    Martinez-Huitle, C.A., Einaga, Y., Oturan M.A., 2022. Conductive-synthetic diamond materials in meeting the sustainable development goals. Curr. Opin. Solid State Mater. Sci. 26(5), 101019. https://doi.org/10.1016/j.cossms.2022.101019.
    Messaoudene, N.A., Naceur, M.W., Ghernaout, D., Alghamdi, A., Aichouni, M., 2018. On the validation perspectives of the proposed novel dimensionless fouling index. Int. J. Adv. Appl. 5, 116-122. https://doi.org/10.21833/ijaas.2018.07.014.
    Misra, R., Guldhe, A., Singh, P., Rawat, I., Stenstrom, T.A., Bux, F., 2015. Evaluating of operating conditions for sustainable harvesting of microalgal biomass applying electrochemical method using non sacrificial electrodes. Bioresour. Technol. 176, 1-7. https://doi.org/10.1016/j.biortech.2014.11.014.
    Moridi, A., Kerachian, R., Zokaei, M., 2017. Assessment of Iran's water resources quality Mouedhen, G., Feki, M., De Petris Wery, M., Ayedi, H.F., 2008. Behavior of aluminum electrodes in the electrocoagulation process. J. Hazard. Mater. 150(1), 124-135. https://doi.org/10.1016/j.jhazmat.2007.04.090.
    Moussa, M.S., El-Naas, M.S., Nasser, M., Al-Marri, M.J., 2017. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. J. Environ. Manag. 186, 24-41. https://doi.org/10.1016/j.jenvman.2016.10.032.
    Nazari, M., Ayati, B., 2019. Removing sodium dodecyl benzene sulfonate using a hybrid electrocoagulation/flotation and photocatalytic system. J. Water Environ. Nanotechnol. 4(3), 236-2463. https://doi.org/10.22090/JWENT.2019.03.006.
    Nezammahalleh, H., Ghanati, F., Adams II, T.A., Nosrati, M., Shojaosadati, S.A., 2016. Effect of moderate static electric field on the growth and metabolism of Chlorella vulgaris. Bioresour. Technol. 218, 700-711. https://doi.org/10.1016/j.biortech.2016.07.018.
    Nezammahalleh, H., Nosrati, M., Ghanati, F., Shojaosadati, S.A., 2017. Energy-based screening of biocompatible solvents for in situ lipid extraction from Chlorella vulgaris. J. Appl. Phycol. 29, 89-103. https://doi.org/10.1007/s10811-016-0921-5.
    Phalakornkule, C., Polgumhang, S., Tongdaung, W., Karakat, B., Nuyut, T., 2010. Electrocoagulation of blue reactive, red disperse and mixed dyes, and application in treating textile effluent. J. Environ. Manag. 91(4), 918-926. https://doi.org/10.1016/j.jenvman.2009.11.008.
    Pumera, M., 2013. Electrochemistry of graphene, graphene oxide and other graphenoids. Electrochem. Commun. 36, 14-18. https://doi.org/10.1016/j.elecom.2013.08.028.
    Sarhangzadeh, K., 2015. Application of multi wall carbon nanotube-graphene hybrid for voltammetric determination of naproxen. J. Iran. Chem. Soc. 12(12), 2133-2140. https://doi.org/10.1007/s13738-015-0690-0.
    Seyyedi, M., Ayati, B., 2021. Treatment of petroleum wastewater using a sequential hybrid system of electro-Fenton and NZVI slurry reactors, future prospects for an emerging wastewater treatment technology. Int. J. Environ. Waste Manag. 28(3), 328-348. https://doi.org/10.1504/IJEWM.2021.118369.
    Seyyedi, M., Ayati, B., 2022. Design and optimization of a sequential and hybrid advanced oxidation process system using response surface methodology. J. Appl. Water Eng. Res. 11(3), 381-393. https://doi.org/10.1080/23249676.2022.2125092.
    Souza, F.K., Cortillas, S., Saez, C., Canizares, P., Lanza, M.R.V., Seco, A., Rodrigo, M.A., 2014. Removal of algae from biological cultures: A challenge for electrocoagulation? J. Chem. Technol. Biotechnol. 91(1), 82-87. https://doi.org/10.1002/jctb.4580.
    Srivastava, V., Kumar, M.S., Nidheesh, P.V., Martinez-Huitle, C.A., 2021. Electro catalytic generation of reactive species at diamond electrodes and applications in microbial inactivation. Curr. Opin. Electrochem. 30, 100849. https://doi.org/10.1016/j.coelec.2021.100849.
    Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., Bieloshapka, I., 2014. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron. Spectrosc. Relat. Phenom. 195, 145-154. https://doi.org/10.1016/j.elspec.2014.07.003.
    Vandamme, D., Pontes, S.C.V., Goiris, K., Foubert, I., Pinoy, L.J.J., Muyalert, K., 2011. Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnol. Bioeng. 108(10), 2320-2329. https://doi.org/10.1002/bit.23199.
    Wang, C.T., Chou, W.L., Kuo, Y.M., 2009a. Removal of COD from laundry wastewater by electrocoagulation/electroflotation. J. Hazard. Mater. 164(1), 81-86. https://doi.org/10.1016/j.jhazmat.2008.07.122.
    Wang, Y., Lu, J., Tang, L., Chang, H., Li, J., 2009b. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal. Chem. 81(23), 9710-9715. https://doi.org/10.1021/ac901935a.
    Wong, Y.K., Ho, Y.H., Leung, H.M., Ho, K.C., Yau, Y.H., Yung, K.K.L., 2017. Enhancement of Chlorella vulgaris harvesting via the electro-coagulation-flotation (ECF) method. Environ. Sci. Pollut. Res. 24(10), 9102-9110. https://doi.org/10.1007/s11356-016-7856-x.
    Yildiz, Y.S., Koparal, A.S., Keskinler, B., 2008. Effect of initial pH and supporting electrolyte on the treatment of water containing high concentration of humic substances by electrocoagulation. Chem. Eng. J. 138(1-3), 63-72. https://doi.org/10.1016/j.cej.2007.05.029.
    Zhang, W., Zhang, Z., Wei, X., Hu, Y., Li, Y., Meng, L., 2022. Long-term spatiotemporal changes of surface water and its influencing factors in the mainstream of Han River, China. J. Hydrol. Reg. Stud. 40, 101009. https://doi.org/10.1016/j.ejrh.2022.101009.
    Zhang, Y., Liu, C., Min, Y., Qi, X., Ben, X., 2013. The simple preparation of graphene/Pt nanoparticles composites and their electrochemical performance. J. Mater. Sci. Mater. Electron. 24, 3244-3248. https://doi.org/10.1007/s10854-013-1235-x.
    Zhao, Z., Sun, W., Ray, A.K., Mao, T., Ray, M.B., 2020. Coagulation and disinfection by-products formation potential of extracellular and intracellular matter of algae and cyanobacteria. Chemosphere 245, 125669. https://doi.org/10.1016/j.chemosphere.2019.125669.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return