Volume 17 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Xiao-xia Lin, Jie-sheng Wu, Qi Shi, Wei-xia Gu. 2024: Preparation and enhanced photocatalytic performance of N-TiO2/g-C3N4 heterostructure for Rhodamine B degradation. Water Science and Engineering, 17(4): 371-377. doi: 10.1016/j.wse.2023.12.007
Citation: Xiao-xia Lin, Jie-sheng Wu, Qi Shi, Wei-xia Gu. 2024: Preparation and enhanced photocatalytic performance of N-TiO2/g-C3N4 heterostructure for Rhodamine B degradation. Water Science and Engineering, 17(4): 371-377. doi: 10.1016/j.wse.2023.12.007

Preparation and enhanced photocatalytic performance of N-TiO2/g-C3N4 heterostructure for Rhodamine B degradation

doi: 10.1016/j.wse.2023.12.007
Funds:

This work was supported by the Funding Program of College Student's Innovative and Entrepreneurial Abilities in Jiangsu (Grant No.202213573114H),the Project of Modern Educational Technology in Jiangsu (Grant No.2022-R-100618),and the Project of Research on School Level Educational Reform of Jinling Institute of Technology (Grant No.JYJG202137).

  • Received Date: 2022-11-29
  • Accepted Date: 2023-12-03
  • Available Online: 2024-11-30
  • Highly efficient photocatalysts have been developed for the degradation of contaminated water under visible light. In this study, N-doped TiO2 (N-TiO2) and metal-free graphitic carbon nitride (g-C3N4) composites with various Ti/C molar ratios were prepared with the simple mixing-calcining method. The samples were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The photocatalytic activity of N-TiO2/g-C3N4 in the degradation of Rhodamine B (RhB) was investigated, and the electrochemical method was used to determine the origin of the enhanced photoactivity of N-TiO2/g-C3N4. The results showed that N-TiO2 nanoparticles were dispersed on the surface of g-C3N4 and formed a stable heterojunction structure with g-C3N4. The heterojunction between the two semiconductors could effectively prevent the recombination of photogenerated electrons and holes and improve the photocatalytic efficiency of the photocatalyst under visible light irradiation. The photocatalyst exhibited high stability, and the RhB degradation rate was still higher than 82.3% after five cycles.

     

  • loading
  • Afsharnia, M., Kianmehr, M., Biglari, H., Dargahi, A., Karimi, A., 2018. Disinfection of dairy wastewater effluent through solar photocatalysis processes. Water Sci. Technol. 11(3), 214-219. https://doi.org/10.1016/j.wse.2018.10.001.
    Asahi, R., Morikawa, T., Irie, H., Ohwaki, T., 2014. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 114(19), 9824-9852. https://doi.org/10.1021/cr5000738.
    Chen, M.Z., Jia, Y.M., Li, H.M., Zheng, W., Huang, T.Y., Zhang, H.F., 2021. Enhanced pyrocatalysis of the pyroelectric BiFeO3/g-C3N4 heterostructure for dye decomposition driven by cold-hot temperature alternation. J. Adv. Ceram. 10, 338-346. https://doi.org/10.1007/s40145-020-0446-x.
    Gu, L.A., Wang, J.Y., Zou, Z.J. Han, X.J., 2014. Graphitic-C3N4-hybridized TiO2 nanosheets with reactive {001} facets to enhance the UV and visible-light photocatalytic activity. J. Hazard. Mater. 268, 216-223. https://doi.org/10.1016/j.jhazmat.2014.01.021.
    He, Y.M., Wang, Y., Zhang, L.H., Teng, B.T., Fan, M.H., 2015. High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Appl. Catal. B Environ. 168-169, 1-8. https://doi.org/10.1016/j.apcatb.2014.12.017.
    Hu, J.D., Chen, D.Y., Li, N.J., Xu, Q.F., Li, H., He, J.H., Lu, J.M., 2018. Fabrication of graphitic-C3N4 quantum dots/grapheme-InVO4 aerogel hybrids with enhanced photocatalytic NO removal under visible-light irradiation. Appl. Catal. B Environ. 236, 45-52. https://doi.org/10.1016/j.apcatb.2018.04.080.
    Jiang, Z.F., Zhu, C.Z., Wan, W.M., 2015. Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production, J. Mater. Chem. A. 4(5), 1806-1818. https://doi.org/10.1039/C5TA09919F.
    Joung, S.K., Amemiya, T., Murabayashi, M., Itoh, K., 2006. Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysts. Chem. Eur. J. 12(21), 5526-5534. https://doi.org/10.1002/chem.200501020.
    Li, B.Y., Zhang, B.N., Zhang, Y.N., Zhang, M.K., Huang, W.H., Yu, C.F., Sun, J.Y., Feng, J.L., Dong, S.Y., 2021. Porous g-C3N4/TiO2 S-scheme heterojunction photocatalyst for visible-light driven H2-production and simultaneous wastewater purification. International Journal of Hydrogen Energy 46, 32413-32424. https://doi.org/10.1016/j.ijhydene.2021.07.090.
    Li, K.Y., Chen, J., Ao, Y.H., Wang, P.F., 2020. Preparation of a ternary g-C3N4-CdS/Bi4O5I2 composite photocatalysts with two charge transfer pathways for efficient degradation of acetaminophen under visible light irradiation. Sep. Purif. Technol. 259, 118-127. https://doi.org/10.1016/j.seppur.2020.118177.
    Liang, H.Y., Li, J.Z., Tian, Y.W., Dai, K., 2017a. Construction of full-spectrum-driven Ag-g-C3N4/W18O49 heterojunction catalyst with outstanding N2 photofixation ability. RSC Adv. 7(68), 42997-43004. http://doi.org/10.1039/C7RA08420J.
    Liang, J., Yang, X., Wang, Y., He, P., Fu, H., Zhao, Y., Zou, Q., An, X., 2021. A review on g-C3N4 incorporated with organics for enhanced photocatalytic water splitting. J. Mater. Chem. A 9(22), 12898-12922. https://doi.org/10.1039/D1TA00890K.
    Liang, Q., Jin, J., Zhang, M., Liu, C.H., Xu, S., Yao, C., Li, Z.H., 2017b. Construction of mesoporous carbon nitride/binary metal sulfide heterojunction photocatalysts for enhanced degradation of pollution under visible light. Appl. Catal. B Environ. 218, 545-554. https://doi.org/10.1016/j.apcatb.2017.07.003.
    Lin, X.X., Rong, F., Fu, D.G., Yuan, C.W., 2012. Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants. Powder Technol. 219, 173-178. https://doi.org/10.1016/j.powtec.2011.12.037.
    Liu, G.M., Dong, G.H., Zeng, Y.B., Wang, C.Y., 2020. The photocatalytic performance and active sites of g-C3N4 effected by the coordination doping of Fe(Ⅲ). Chin. J. Catal. 41(10), 1564-1572. https://doi.org/10.1016/S1872-2067(19)63518-7.
    Park, T.P., Lee, C.S., Park, C.H., Kim, J.H., 2017. Preparation of TiO2/Ag binary nanocomposite as high-activity visible-light-driven photocatalyst via graft polymerization. Chem. Phys. Lett. 685, 119-126. https://doi.org/10.1016/j.cplett.2017.07.054.
    Tang, C.N., Liu, E.Z., Fan, J., Hu, X.Y., Ma, Y.N., Wan, J., 2015. Graphitic-C3N4-hybridized AgPO4 tetrahedron with reactive {111} facets to enhance the visible-light photocatalytic activity. RSC Advances 5(112), 91979-91987. https://doi.org/10.1039/C5RA18096A.
    Tang, M.G., Ao, Y.H., Wang, C., Wang, P.F., 2020. Rationally constructing of a novel dual Z-scheme composite photocatalyst with significantly enhanced performance for neonicotinoid degradation under visible light irradiation. Appl. Catal. B Environ. 270, 1-11. https://doi.org/10.1016/j.apcatb.2020.118918.
    Wu, H., Chen, D., Li, N.J., Xu, Q.F., Li, H., He, J.H., Lu, J.M., 2016. Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO. Nanoscale 8(23), 12066-12072. https://doi.org/10.1039/c6nr02955h.
    Xu, J.J., Yang, J.W., Zhang, P., Yuan, Q., Zhu, Y.H., Wang, Y., Wu, M.M., Wang, Z.M., Chen, M.D., 2017. Preparation of 2D square-like Bi2S3-BiOCl heterostructures with enhanced visible light-driven photocatalytic performance for dye pollutant degradation. Water Sci. Technol. 10, 334-339. https://doi.org/10.1016/j.wse.2017.12.010.
    Yan, J.Q., Wu, H., Chen, H., Zhang, Y.X., Zhang, F.X., 2016. Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl. Cata. B Environ. 191, 130-137. https://doi.org/10.1016/j.apcatb.2016.03.026.
    Yang, S.K., Zhang, C.N., Rao, D.W., Yan, X.H., 2022. Synergistic interaction of Nb atoms anchored on g-C3N4 and H+ promoting high-efficiency nitrogen reduction reaction. Chin. J. Catal. 43(4), 1139-1147. https://doi.org/10.1016/S1872-2067(21)63950-5.
    Yu, J.G., Wang, S.H., Low, J.X., Xiao, W., 2013. Enhanced photocatalytic performance of Z-scheme g-C3N4/TiO2 photocatalyst for decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15(39), 16883-16890. https://doi.org/10.1039/c3cp53131g.
    Yuan, L., Weng, B., Colmenares, J.C., Sun, Y., Xu, Y.J., 2017. Multichannel charge transfer and mechanistic insight in metal decorated 2D-2D BiWO6-TiO2 cascade with enhanced photocatalytic performance. Small 13(48), 1702253. https://doi.org/10.1002/smll.201702253.
    Zhou, S., Liu, Y., Li, J.M., Wang, Y.J., Jiang, G.Y., Zhao, Z., Wang, D.X., Duan, A.J., Liu, J., Wei, Y.C., 2014. Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO. Appl. Catal. B Environ. 158-159, 20-29. http://doi.org/10.1016/j.apcatb.2014.03.037.
    Zou, J., Liao, G.D., Jiang, J.Z., Xiong, Z.G., Bai, S.S., Wang, H.T., Wu, P.X., Zhang, P., Li, X., 2022. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 41(1), 25-33. https://doi.org/10.14102/j.cnki.0254-5861.2021-0039.
    Zou, Y.J., Shi, J.W., Shi, J.W., Ma, D.D., Fan, Z.Y., Lu, L., Niu, C.M., 2017. In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution. Chem. Eng. J. 322, 435-444. https://doi.org/10.1016/j.cej.2017.04.056.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return