Citation: | Xiao-xia Lin, Jie-sheng Wu, Qi Shi, Wei-xia Gu. 2024: Preparation and enhanced photocatalytic performance of N-TiO2/g-C3N4 heterostructure for Rhodamine B degradation. Water Science and Engineering, 17(4): 371-377. doi: 10.1016/j.wse.2023.12.007 |
Afsharnia, M., Kianmehr, M., Biglari, H., Dargahi, A., Karimi, A., 2018. Disinfection of dairy wastewater effluent through solar photocatalysis processes. Water Sci. Technol. 11(3), 214-219. https://doi.org/10.1016/j.wse.2018.10.001.
|
Asahi, R., Morikawa, T., Irie, H., Ohwaki, T., 2014. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 114(19), 9824-9852. https://doi.org/10.1021/cr5000738.
|
Chen, M.Z., Jia, Y.M., Li, H.M., Zheng, W., Huang, T.Y., Zhang, H.F., 2021. Enhanced pyrocatalysis of the pyroelectric BiFeO3/g-C3N4 heterostructure for dye decomposition driven by cold-hot temperature alternation. J. Adv. Ceram. 10, 338-346. https://doi.org/10.1007/s40145-020-0446-x.
|
Gu, L.A., Wang, J.Y., Zou, Z.J. Han, X.J., 2014. Graphitic-C3N4-hybridized TiO2 nanosheets with reactive {001} facets to enhance the UV and visible-light photocatalytic activity. J. Hazard. Mater. 268, 216-223. https://doi.org/10.1016/j.jhazmat.2014.01.021.
|
He, Y.M., Wang, Y., Zhang, L.H., Teng, B.T., Fan, M.H., 2015. High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Appl. Catal. B Environ. 168-169, 1-8. https://doi.org/10.1016/j.apcatb.2014.12.017.
|
Hu, J.D., Chen, D.Y., Li, N.J., Xu, Q.F., Li, H., He, J.H., Lu, J.M., 2018. Fabrication of graphitic-C3N4 quantum dots/grapheme-InVO4 aerogel hybrids with enhanced photocatalytic NO removal under visible-light irradiation. Appl. Catal. B Environ. 236, 45-52. https://doi.org/10.1016/j.apcatb.2018.04.080.
|
Jiang, Z.F., Zhu, C.Z., Wan, W.M., 2015. Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production, J. Mater. Chem. A. 4(5), 1806-1818. https://doi.org/10.1039/C5TA09919F.
|
Joung, S.K., Amemiya, T., Murabayashi, M., Itoh, K., 2006. Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysts. Chem. Eur. J. 12(21), 5526-5534. https://doi.org/10.1002/chem.200501020.
|
Li, B.Y., Zhang, B.N., Zhang, Y.N., Zhang, M.K., Huang, W.H., Yu, C.F., Sun, J.Y., Feng, J.L., Dong, S.Y., 2021. Porous g-C3N4/TiO2 S-scheme heterojunction photocatalyst for visible-light driven H2-production and simultaneous wastewater purification. International Journal of Hydrogen Energy 46, 32413-32424. https://doi.org/10.1016/j.ijhydene.2021.07.090.
|
Li, K.Y., Chen, J., Ao, Y.H., Wang, P.F., 2020. Preparation of a ternary g-C3N4-CdS/Bi4O5I2 composite photocatalysts with two charge transfer pathways for efficient degradation of acetaminophen under visible light irradiation. Sep. Purif. Technol. 259, 118-127. https://doi.org/10.1016/j.seppur.2020.118177.
|
Liang, H.Y., Li, J.Z., Tian, Y.W., Dai, K., 2017a. Construction of full-spectrum-driven Ag-g-C3N4/W18O49 heterojunction catalyst with outstanding N2 photofixation ability. RSC Adv. 7(68), 42997-43004. http://doi.org/10.1039/C7RA08420J.
|
Liang, J., Yang, X., Wang, Y., He, P., Fu, H., Zhao, Y., Zou, Q., An, X., 2021. A review on g-C3N4 incorporated with organics for enhanced photocatalytic water splitting. J. Mater. Chem. A 9(22), 12898-12922. https://doi.org/10.1039/D1TA00890K.
|
Liang, Q., Jin, J., Zhang, M., Liu, C.H., Xu, S., Yao, C., Li, Z.H., 2017b. Construction of mesoporous carbon nitride/binary metal sulfide heterojunction photocatalysts for enhanced degradation of pollution under visible light. Appl. Catal. B Environ. 218, 545-554. https://doi.org/10.1016/j.apcatb.2017.07.003.
|
Lin, X.X., Rong, F., Fu, D.G., Yuan, C.W., 2012. Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants. Powder Technol. 219, 173-178. https://doi.org/10.1016/j.powtec.2011.12.037.
|
Liu, G.M., Dong, G.H., Zeng, Y.B., Wang, C.Y., 2020. The photocatalytic performance and active sites of g-C3N4 effected by the coordination doping of Fe(Ⅲ). Chin. J. Catal. 41(10), 1564-1572. https://doi.org/10.1016/S1872-2067(19)63518-7.
|
Park, T.P., Lee, C.S., Park, C.H., Kim, J.H., 2017. Preparation of TiO2/Ag binary nanocomposite as high-activity visible-light-driven photocatalyst via graft polymerization. Chem. Phys. Lett. 685, 119-126. https://doi.org/10.1016/j.cplett.2017.07.054.
|
Tang, C.N., Liu, E.Z., Fan, J., Hu, X.Y., Ma, Y.N., Wan, J., 2015. Graphitic-C3N4-hybridized AgPO4 tetrahedron with reactive {111} facets to enhance the visible-light photocatalytic activity. RSC Advances 5(112), 91979-91987. https://doi.org/10.1039/C5RA18096A.
|
Tang, M.G., Ao, Y.H., Wang, C., Wang, P.F., 2020. Rationally constructing of a novel dual Z-scheme composite photocatalyst with significantly enhanced performance for neonicotinoid degradation under visible light irradiation. Appl. Catal. B Environ. 270, 1-11. https://doi.org/10.1016/j.apcatb.2020.118918.
|
Wu, H., Chen, D., Li, N.J., Xu, Q.F., Li, H., He, J.H., Lu, J.M., 2016. Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO. Nanoscale 8(23), 12066-12072. https://doi.org/10.1039/c6nr02955h.
|
Xu, J.J., Yang, J.W., Zhang, P., Yuan, Q., Zhu, Y.H., Wang, Y., Wu, M.M., Wang, Z.M., Chen, M.D., 2017. Preparation of 2D square-like Bi2S3-BiOCl heterostructures with enhanced visible light-driven photocatalytic performance for dye pollutant degradation. Water Sci. Technol. 10, 334-339. https://doi.org/10.1016/j.wse.2017.12.010.
|
Yan, J.Q., Wu, H., Chen, H., Zhang, Y.X., Zhang, F.X., 2016. Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl. Cata. B Environ. 191, 130-137. https://doi.org/10.1016/j.apcatb.2016.03.026.
|
Yang, S.K., Zhang, C.N., Rao, D.W., Yan, X.H., 2022. Synergistic interaction of Nb atoms anchored on g-C3N4 and H+ promoting high-efficiency nitrogen reduction reaction. Chin. J. Catal. 43(4), 1139-1147. https://doi.org/10.1016/S1872-2067(21)63950-5.
|
Yu, J.G., Wang, S.H., Low, J.X., Xiao, W., 2013. Enhanced photocatalytic performance of Z-scheme g-C3N4/TiO2 photocatalyst for decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15(39), 16883-16890. https://doi.org/10.1039/c3cp53131g.
|
Yuan, L., Weng, B., Colmenares, J.C., Sun, Y., Xu, Y.J., 2017. Multichannel charge transfer and mechanistic insight in metal decorated 2D-2D BiWO6-TiO2 cascade with enhanced photocatalytic performance. Small 13(48), 1702253. https://doi.org/10.1002/smll.201702253.
|
Zhou, S., Liu, Y., Li, J.M., Wang, Y.J., Jiang, G.Y., Zhao, Z., Wang, D.X., Duan, A.J., Liu, J., Wei, Y.C., 2014. Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO. Appl. Catal. B Environ. 158-159, 20-29. http://doi.org/10.1016/j.apcatb.2014.03.037.
|
Zou, J., Liao, G.D., Jiang, J.Z., Xiong, Z.G., Bai, S.S., Wang, H.T., Wu, P.X., Zhang, P., Li, X., 2022. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 41(1), 25-33. https://doi.org/10.14102/j.cnki.0254-5861.2021-0039.
|
Zou, Y.J., Shi, J.W., Shi, J.W., Ma, D.D., Fan, Z.Y., Lu, L., Niu, C.M., 2017. In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution. Chem. Eng. J. 322, 435-444. https://doi.org/10.1016/j.cej.2017.04.056.
|