Volume 18 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
Nishank Agrawal, Ellora Padhi. 2025: Impacts of bed roughness and orientation on hydraulic jump: A review. Water Science and Engineering, 18(1): 90-101. doi: 10.1016/j.wse.2024.03.003
Citation: Nishank Agrawal, Ellora Padhi. 2025: Impacts of bed roughness and orientation on hydraulic jump: A review. Water Science and Engineering, 18(1): 90-101. doi: 10.1016/j.wse.2024.03.003

Impacts of bed roughness and orientation on hydraulic jump: A review

doi: 10.1016/j.wse.2024.03.003
  • Received Date: 2023-07-29
  • Accepted Date: 2024-02-15
  • Available Online: 2025-03-05
  • Hydraulic jumps are a prevalent phenomenon in flows through spillways, chutes, and sluice gates. As hydraulic jumps exhibit substantial kinetic energy, the downstream of a hydraulic structure is prone to scour. To mitigate downstream scour and enhance energy dissipation, hydraulic jumps are often directed into stilling basins with various bed configurations, including horizontal, sloping, rough, and their combinations. This review compiles numerous analytical and experimental studies on hydraulic jumps under various bed conditions. The effect of bed roughness on sequent depth ratio, roller and jump lengths, shear stress, and energy dissipation is critically reviewed. The impacts of roughness height, flow Froude number, and bed angle on jump characteristics are discussed, substantiated by comparative analyses for distinct roughness heights. The results indicate that bed roughness intensifies shear stress, resulting in augmented energy dissipation and reductions in jump length and sequent depth. Additionally, the analytical and empirical equations proposed by researchers for different jump scenarios are discussed, and their applicability under various conditions is summarized. Finally, it suggests considering the scale effect in future research to refine the comprehension of jump stability over adverse slopes.

     

  • loading
  • Abbaspour, A., Dalir, A.H., Farsadizadeh, D., Sadraddini, A.A., 2009. Effect of sinusoidal corrugated bed on hydraulic jump characteristics. J. Hydro-Environ. Res. 3(2), 109-117, https://doi.org/10.1016/j.jher.2009.05.003.
    Abbaszadeh, H., Daneshfaraz, R., Norouzi, R., 2023. Experimental investigation of hydraulic jump parameters in sill application mode with various synthesis. J. Hydraul. Struc. 9(1), 18-42, https://doi.org/10.22055/jhs.2023.43208.1245.
    Adam, A.M., Ruff, J.F., AlQaser, G., Abt, S.R., 1993. Characteristics of B-jump with different toe locations. J. Hydraul. Eng. 119(8), 938-948, https://doi.org/10.1061/(ASCE)0733-9429(1993)119:8(938).
    Afzal, N., Bushra, A., Seena, A., 2011. Analysis of turbulent hydraulic jump over a transitional rough bed of a rectangular channel: Universal relations. J. Eng. Mech. 137(12), 835-845, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000294.
    Azimi, H., Shabanlou, S., Kardar, S., 2017. Characteristics of hydraulic jump in U-shaped channels. Arabian J. Sci. Eng. 42, 3751-3760, https://doi.org/10.1007/s13369-017-2503-5.
    Belanger, J.B., 1828. Essay on the Numerical Solution of Some Problems Relative to Steady Flow of Water). Carilian-Goeury, Paris (in French).
    Beirami, M.K., Chamani, M.R., 2006. Hydraulic jumps in sloping channels: Sequent depth ratio. J. Hydraul. Eng. 132(10), 1061-1068, https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1061).
    Beirami, M.K., Chamani, M.R., 2010. Hydraulic jump in sloping channels: Roller length and energy loss. Can. J. Civ. Eng. 37(4), 535-543, https://doi.org/10.1139/L09-175.
    Carollo, F.G., Ferro, V., 2004. Determinazione delle altezze coniugate del risalto libero su fondo liscio e scabro. Riv. Ing. Agrar. 35 (4), 1-11.
    Carollo, F.G., Ferro, V., Pampalone, V., 2007. Hydraulic jumps on rough beds. J. Hydraul. Eng., 133(9), 989-999, https://doi.org/10.1061/(ASCE)0733-9429(2007)133:9(989).
    Carollo, F.G., Ferro, V., Pampalone, V., 2009. New solution of classical hydraulic jump. J. Hydraul. Eng. 135(6), 527-531, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000036.
    Carollo, F.G., Ferro, V., Pampalone, V., 2011. Sequent depth ratio of a B-jump. J. Hydraul. Eng. 137(6), 651-658, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000342.
    Carollo, F.G., Ferro, V., Pampalone, V., 2012. New expression of the hydraulic jump roller length. J. Hydraul. Eng. 138(11), 995-999, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000634.
    Carollo, F.G., Ferro, V., Pampalone, V., 2013. Sequent depth ratio of B-jumps on smooth and rough beds. J. Agri. Eng. 44(2), e12, https://doi.org/10.4081/jae.2013.e12.
    Chanson, H., Brattberg, T., 2000. Experimental study of the air-water shear flow in a hydraulic jump. Int. J. Multiphas. Flow 26(4), 583-607, https://doi.org/10.1016/S0301-9322(99)00016-6.
    Chanson, H., 2009. Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur. J. Mech. B Fluid 28(2), 191-210, https://doi.org/10.1016/j.euromechflu.2008.06.004.
    Citrini, D., 1939. The hydraulic jump. Energia Elettr. 16(6), 441-465 (in Italian).
    Daneshfaraz, R., Norouzi, R., Ebadzadeh, P., 2022. Experimental and numerical study of sluice gate flow pattern with non-suppressed sill and its effect on discharge coefficient in free-flow conditions. J. Hydraul. Struc. 8(1), 1-20, https://doi.org/10.22055/jhs.2022.40089.1201.
    Daneshfaraz, R., Norouzi, R., Ebadzadeh, P., Kuriqi, A., 2023. Influence of sill integration in labyrinth sluice gate hydraulic performance. Innov. Infrastruct. Solut. 8(4), 118, https://doi.org/10.1007/s41062-023-01083-z.
    Defina, A., Susin, F.M., Viero, D.P., 2008. Bed friction effects on the stability of a stationary hydraulic jump in a rectangular upward sloping channel. Phys. Fluid. 20(3), 036601, https://doi.org/10.1063/1.2841622.
    Ead, S.A., Rajaratnam, N., 2002. Hydraulic jump on corrugated bed. J. Hydraul. Eng. 128(7), 656-663, https://doi.org/10.1061/(ASCE)0733-9429(2002)128:7(656).
    Hager, W.H., 1988. B-jump in sloping channel. J. Hydraul. Res. 26(5), 539-558, https://doi.org/10.1080/00221688809499192.
    Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: Sequent depths. J. Hydraul. Res. 27(5), 565-585, https://doi.org/10.1080/00221688909499111.
    Hager, W.H., Bremen, R., Kawagoshi, N., 1990. Classical hydraulic jump: Length of roller. J. Hydraul. Res. 28(5), 591-608, https://doi.org/10.1080/00221689009499048.
    Hager, W.H., 1992. Energy Dissipator and Hydraulic Jump. Kluwer Academic Publishers, Dordrecht.
    Harleman, D.R., 1959. Discussion of “Harleman on hydraulic jump”. Trans. Am. Soc. Civ. Eng. 124(1), 959-962, https://doi.org/10.1061/TACEAT.0007681.
    Head, M.R., Rechenberg, I., 1962. The Preston tube as a means of measuring skin friction. J. Fluid Mech. 14(1), 1-17, https://doi.org/10.1017/S0022112062001020.
    Hughes, W.C., Flack, J.E., 1984. Hydraulic jump properties over rough bed. J. Hydraul. Eng. 110(12), 1751-1771, https://doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1755).
    Husain, D., Alhamid, A.A., Negm, A.A.M., 1994. Length and depth of hydraulic jump in sloping channels. J. Hydraul. Res. 32(6), 899-910, https://doi.org/10.1080/00221689409498697.
    Jan, C.D., Chang, C.J., 2009. Hydraulic jumps in an inclined rectangular chute contraction. J. Hydraul. Eng. 135(11), 949-958, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000100.
    Kawagoshi, N., Hager, W.H., 1990. B-jump in sloping channel, II. J. Hydraul. Res. 28(4), 461-480, https://doi.org/10.1080/00221689009499060.
    Khadar, M.H., Rajagopal, S., 1972. Hydraulic jump in adverse channel slopes. Water Energy Int. 29(1), 77-82.
    Kindsvater, C.E., 1944. The hydraulic jump in sloping channels. Trans. Am. Soc. Civ. Eng. 109(1), 1107-1120, https://doi.org/10.1061/TACEAT.0005733.
    Kumar, M., Lodhi, A.S., 2015. Hydraulic jump over sloping rough floors. ISH J. Hydraul. Eng. 22(2), 127-134, https://doi.org/10.1080/09715010.2015.1088409.
    Leutheusser, H.J., Kartha, V.C., 1972. Effects of inflow condition on hydraulic jump. J. Hydraul. Div. 98, 1367-1383, https://doi.org/10.1061/JYCEAJ.0003371.
    Leutheusser, H.J., Schiller, E.J., 1975. Hydraulic jump in a rough channel. Water Pow. Dam Const. 27(5), 186-191.
    Maleki, S., Fiorotto, V., 2021. Hydraulic jump stilling basin design over rough beds. J. Hydraul. Eng. 147(1), 04020087, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001824.
    Mavis, F.T., Luksch, A., 1936. Discussion of Bakhmeteff & Matzke (1936). Trans. Am. Soc. Civ. Eng. 101, 669-672.
    McCorquodale, J.A., Khalifa, A., 1983. Internal flow in hydraulic jumps. J. Hydraul. Eng. 109(5), 684-701, https://doi.org/10.1061/(ASCE)0733-9429(1983)109:5(684).
    McCorquodale, J.A., Mohamed, M.S. 1994. Hydraulic jumps on adverse slopes. J. Hydraul. Res. 32(1), 119-130, https://doi.org/10.1080/00221689409498793.
    Nikuradse, J., 1933. Stromungsgesetze in rauhen rohren. Verein Deutscher Ingenieur Forschungsheft 361, 1-22.
    Ohtsu, I., Yasuda, Y., 1991. Hydraulic jump in sloping channels. J. Hydraul. Eng. 117(7), 905-921, https://doi.org/10.1061/(ASCE)0733-9429(1991)117:7(905).
    Pagliara, S., Peruginelli, A., 2000. Limiting and still controlled adverse-slope hydraulic jump. J. Hydraul. Eng. 126, 847-851, https://doi.org/10.1061/(ASCE)0733-9429(2000)126:11(847).
    Pagliara, S., Lotti, I., Palermo, M., 2008. Hydraulic jumps on rough beds of stream rehabilitation structures. J. Hydro-Environ. Res. 2(1), 29-38, https://doi.org/10.1016/j.jher.2008.06.001.
    Pagliara, S., Palermo, M., 2015. Hydraulic jumps on rough and smooth beds: An aggregate approach for horizontal and adverse-sloped beds. J. Hydraul. Res. 53 (2), 243-252, https://doi.org/10.1080/00221686.2015.1017778.
    Palermo, M., Pagliara, S., 2018. Semi-theoretical approach for energy dissipation estimation at hydraulic jumps in rough sloped channels. J. Hydraul. Res. 56(6), 786-795, https://doi.org/10.1080/00221686.2017.1419991.
    Parsamehr, P., Farsadizadeh, D., Hosseinzadeh Dalir, A., Abbaspour, A., Nasr Esfahani, M.J., 2017. Characteristics of hydraulic jump on the rough bed with adverse slope. ISH J. Hydraul. Eng. 23(3), 301-307, https://doi.org/10.1080/09715010.2017.1313143.
    Parsamehr, P., Kuriqi, A., Farsadizadeh, D., Dalir, A.H., Daneshfaraz, R., Ferreira, R.M., 2022. Hydraulic jump over an adverse slope controlled by different roughness elements. Water Resour. Manag. 36(14), 5729-5749, https://doi.org/10.1007/s11269-022-03330-x.
    Patel, V.C., 1965. Calibration of the Preston tube and limitations on its use in pressure gradients. J. Fluid Mech. 23(1), 185-208, https://doi.org/10.1017/S0022112065001301.
    Peterka, A.J., 1978. Hydraulic Design of Stilling Basins and Energy Dissipators (No. 25). United States Department of the Interior, Bureau of Reclamation, Washington DC.
    Pietrkowski, J., 1932. Contribution to the knowledge on hydraulic jumps. Wasserwirtschaft 25(25), 356-358 (in German).
    Rajaratnam, N., 1965. The hydraulic jump as a well jet. J. Hydraul. Div. 91(5), 107-132, https://doi.org/10.1061/JYCEAJ.0001299.
    Rajaratnam, N., 1966. The hydraulic jump in sloping channels. Trans. Am. Soc. Civ. Eng. 23(2), 137-149, https://doi.org/10.1061/TACEAT.000573.
    Rajaratnam, N., 1967. Hydraulic jumps. Adv. Hydrosci. 4, 197-280, https://doi.org/10.1016/B978-1-4831-9935-1.50011-2.
    Rajaratnam, N., 1968. Hydraulic jumps on rough beds. Trans. Eng. Inst. Can. 11(A-2), 1-8.
    Rao, N.G., Ramaprasad, 1966. Application of momentum equation in the hydraulic jump. La Houille Blanche 52(4), 451-453, https://doi.org/10.1051/lhb/1966029.
    Resch, F.J., Leutheusser, H.J., 1972. Reynolds stress measurements in hydraulic jumps. J. Hydraul. Res. 10(4), 409-430, https://doi.org/10.1080/00221687209500033.
    Rouse, H., 1938. Fluid Mechanics for Hydraulic Engineers. McGraw-Hill, New York.
    Smetana, J., 1937. Experimental studies on the free and submerged hydraulic jumps. Energia Elettr. 24(10), 829-835.
    Turker, U., Valyrakis, M., 2021. Hydraulic jump on rough beds: Conceptual modelling and experimental validation. Water Supply. 21(4), 1423-1437, https://doi.org/10.2166/ws.2020.292.
    Wu, S., Rajaratnam, N., 2000. A simple method for measuring shear stress on rough boundaries. J. Hydraul. Res. 38(5), 399-401, https://doi.org/10.1080/00221680009498321.
    Yonesi, H.A., Daneshfaraz, R., Mirzaee, R., Bagherzadeh, M., 2023. Maximum energy loss in a vertical drop equipped with horizontal screen with downstream rough and smooth bed. Water Supply. 23(2), 960-974, https://doi.org/10.2166/ws.2023.005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (2) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return