Citation: | Xue-gao Chen, Zhong-bo Yu, Hui Lin, Tong-qing Shen, Peng Jiang. 2024: Hydrological responses to permafrost degradation on Tibetan Plateau under changing climate. Water Science and Engineering, 17(3): 209-216. doi: 10.1016/j.wse.2024.04.002 |
Chen, X., Yu, Z., Huang, Q., Yi, P., Shi, X., Aldahan, A., Xiong, L., Wan, C., Chen, P., 2021. Evaluating the water level variation of a high-altitude lake in response to environmental changes on the southern Tibetan Plateau. J. Hydrol. Eng. 26(5), 05021010. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002050.
|
Chen, X., Yu, Z., Yi, P., Aldahan, A., Hwang, H.-T., Sudicky, E.A., 2023. Disentangling runoff generation mechanisms: Combining isotope tracing with integrated surface/subsurface simulation. J. Hydrol. 617, 129149. https://doi.org/10.1016/j.jhydrol.2023.129149.
|
Cheng, G., 1984. Problems on zonation of high-altitude permafrost. Acta Geograph. Sin. 39(2), 185-193 (in Chinese).
|
Cheng, G., Jin, H., 2013. Permafrost and groundwater on the Qinghai-Tibet plateau and in northeast China. Hydrogeol. J. 21, 5-23. https://doi.org/10.1007/s10040-012-0927-2.
|
Cheng, W.M., Zhao, S.M., Zhou, C.H. Chen, X., 2012. Simulation of the decadal permafrost distribution on the Qinghai-Tibet Plateau (China) over the past 50 years. Permafr. Periglac. Process. 23(4), 292-300. https://doi.org/10.1002/ppp.1758.
|
Dong, Q., Luo, S., Wen, X., Wang, J., Li, W., 2022. Changes of precipitation and its effects on soil temperature and freeze-thaw process in southeastern Xizang in recent 60 years. Plateau Meteorol. 41(2), 404-419 (in Chinese). https://doi.org/10.7522/j.issn.1000-0534.2021.00065.
|
Fang, X., Luo, S., Lyu, S., 2019. Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960-2014. Theor. Appl. Climatol. 135, 169-181. https://doi.org/10.1007/s00704-017-2337-9.
|
Gao, T., Zhang, T., Cao, L., Kang, S., Sillanpaa, M., 2016. Reduced winter runoff in a mountainous permafrost region in the northern Tibetan Plateau. Cold Reg. Sci. Technol. 126, 36-43. https://doi.org/10.1016/j.coldregions.2016.03.007.
|
Gu, H., Xu, Y., Liu, L., Xie, J., Wang, L., Pan, S., Guo, Y., 2023. Seasonal catchment memory of high mountain rivers in the Tibetan Plateau. Nat. Commun. 14(1), 3173-3173. https://doi.org/10.1038/s41467-023-38966-9.
|
Huang, J., Zhou, X., Wu, G., Xu, X., Zhao, Q., Liu, Y., Duan, A., Xie, Y., Ma, Y., Zhao, P., et al., 2023. Global climate impacts of land-surface and atmospheric processes over the Tibetan Plateau. Rev. Geophys. 61(3), e2022RG000771. https://doi.org/10.1029/2022RG000771.
|
Jiao, S., Wang, L., Liu, G., 2016. Prediction of Tibetan Plateau permafrost distribution in global warming. Acta Sci. Nauralium Univ. Pekin. 52(2), 249-256.
|
Kneisel, C., Hauck, C., Fortier, R., Moorman, B., 2008. Advances in geophysical methods for permafrost investigations. Permafr. Periglac. Process. 19(2), 157-178. https://doi.org/10.1002/ppp.616.
|
Levavasseur, G., Vrac, M., Roche, D., Paillard, D., Martin, A., Vandenberghe, J., 2011. Present and LGM permafrost from climate simulations: Contribution of statistical downscaling. Clim. Past 7(4), 1225-1246. https://doi.org/10.5194/cp-7-1225-2011.
|
Li, X., Wu, T., Zhu, X., Jiang, Y., Ying, X, 2020. Improving the Noah-MP model for simulating hydrothermal regime of the active layer in the permafrost regions of the Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 125(16), e2020JD032588. https://doi.org/10.1029/2020JD032588.
|
Li, Y., Wang, T., Yang, D., Tang, L., Yang, K., Liu, Z., 2021. Linkage between anomalies of pre-summer thawing of frozen soil over the Tibetan Plateau and summer precipitation in East Asia. Environ. Res. Lett. 16, 114030. https://doi.org/10.1088/1748-9326/ac2f1c.
|
Lu, Q., Zhao, D., Wu, S., 2017. Simulated responses of permafrost distribution to climate change on the Qinghai-Tibet Plateau. Sci. Rep. 7, 3845. https://doi.org/10.1038/s41598-017-04140-7.
|
Luo, S., Fang, X., Lyu, S., Ma, D., Chang, Y., Song, M., Chen, H., 2016. Frozen ground temperature trends associated with climate change in the Tibetan Plateau Three River Source Region from 1980 to 2014. Clim. Res. 67(3), 241-255. https://doi.org/10.3354/cr01371.
|
Ma, Q., Jin, H., Bense, V., Luo, D., Marchenko, S., Harris, S., Lan, Y., 2019. Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet plateau, China. Adv. Clim. Chang. Res. 10(4), 225-239. https://doi.org/10.1016/j.accre.2020.02.001.
|
Nan, Z., Li, S., Liu, Y., 2002. Mean annual ground temperature distribution on the Tibetan Plateau: Permafrost distribution mapping and further application. J. Glaciol. Geocryol. 24(2), 142-148.
|
Niu, F., Luo, J., Lin, Z., Liu, M., Yin, G., 2014. Morphological characteristics of thermokarst lakes along the Qinghai-Tibet engineering corridor. Arctic Antarct. Alpine Res. 46(4), 963-974. https://doi.org/10.1657/1938-4246-46.4.963.
|
Pan, X., You, Y., Roth, K., Guo, L., Wang, X., Yu, Q., 2014. Short communication mapping permafrost features that influence the hydrological processes of a thermokarst lake on the Qinghai-Tibet plateau, China. Permafr. Periglac. Process. 25(1), 60-68. https://doi.org/10.1002/ppp.1797.
|
Pan, X., Yu, Q., You, Y., Chun, K., Shi, X., Li, Y., 2017. Contribution of supra-permafrost discharge to thermokarst lake water balances on the northeastern Qinghai-Tibet Plateau. J. Hydrol. 555, 621-630. https://doi.org/10.1016/j.jhydrol.2017.10.046.
|
Park, H., Kim, Y., Kimball, J., 2016. Widespread permafrost vulnerability and soil active layer increases over the high northern latitudes inferred from satellite remote sensing and process model assessments. Remote Sens. Environ. 175, 349-358. https://doi.org/10.1016/j.rse.2015.12.046.
|
Qin, Y., Lei, H., Yang, D., Gao, B., Wang, Y., Cong, Z., Fan, W., 2016. Long-term change in the depth of seasonally frozen ground and its ecohydrological impacts in the Qilian mountains, northeastern Tibetan Plateau. J. Hydrol. 542, 204-221. https://doi.org/10.1016/j.jhydrol.2016.09.008.
|
Ran, Y., Li, X., Cheng, G., Zhang, T., Wu, Q., Jin, H., Jin, R., 2012. Distribution of permafrost in China: An overview of existing permafrost maps. Permafr. Periglac. Process. 23(3), 322-333. https://doi.org/10.1002/ppp.1756.
|
Romanovsky, V., Drozdov, D., Oberman, N., Malkova, G., Kholodov, A., Marchenko, S., Moskalenko, N., Sergeev, D., Ukraintseva, N., Abramov, A., et al., 2010a. Thermal state of permafrost in Russia. Permafr. Periglac. Process. 21(2), 136-155. https://doi.org/10.1002/ppp.683.
|
Romanovsky, V., Smith, S., Christiansen, H., 2010b. Permafrost thermal state in the polar northern hemisphere during the international polar year 2007-2009: A synthesis. Permafr. Periglac. Process. 21(2), 106-116. https://doi.org/10.1002/ppp.689.
|
Shen, T., Jiang, P., Ju, Q., Yu, Z., Chen, X., Lin, H., Zhang, Y., 2023. Changes in permafrost spatial distribution and active layer thickness from 1980 to 2020 on the Tibet Plateau. Sci. Total Environ. 859(2), 160381. https://doi.org/10.1016/j.scitotenv.2022.160381.
|
Shen, T., Jiang, P., Ju, Q., Zhao, J., Chen, X., Lin, H., Yang, B., Tan, C., Zhang, Y., Fu, X., Yu, Z., 2024. Permafrost on the Tibetan Plateau is degrading: Historical and projected trends. J. Hydrol. 628, 130501. https://doi.org/10.1016/j.jhydrol.2023.130501.
|
Shi, R., Yang, H., Yang, D., 2020. Spatiotemporal variations in frozen ground and their impacts on hydrological components in the source region of the Yangtze River. J. Hydrol. 590, 125237. https://doi.org/10.1016/j.jhydrol.2020.125237.
|
Smith, S., Romanovsky, V., Lewkowicz, A., Burn, C., Allard, M., Clow, G., Yoshikawa, K., Throop, J., 2010. Thermal state of permafrost in north America: A contribution to the international polar year. Permafr. Periglac. Process. 21(2), 117-135. https://doi.org/10.1002/ppp.690.
|
Song, C., Wang, G., Mao, T., Dai, J., Yang, D., 2020. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau. Sci. China Earth Sci. 63(2), 292-302. https://doi.org/10.1007/s11430-018-9383-6.
|
Wang, H., Liu, H., Ni, W., 2017. Factors influencing thermokarst lake development in Beiluhe basin, the Qinghai-Tibet Plateau. Environ. Earth Sci. 76(24), 816. https://doi.org/10.1007/s12665-017-7143-2.
|
Wang, T., Zhao, Y., Xu, C., Ciais, P., Liu, D., Yang, H., Piao, S., Yao, T., 2021a. Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets. Nat. Clim. Change 11, 219-225. https://doi.org/10.1038/s41558-020-00974-8.
|
Wang, T., Yang, D., Yang, Y., Zheng, G., Jin, H., Li, X., Yao, T., Cheng, G., 2023. Unsustainable water supply from thawing permafrost on the Tibetan Plateau in a changing climate. Sci. Bull. 68(11), 1105-1108. https://doi.org/10.1016/j.scib.2023.04.037.
|
Wang, X., Gao, B., 2022. Frozen soil change and its impact on hydrological processes in the Qinghai Lake basin, the Qinghai-Tibetan Plateau, China. J. Hydrol. Reg. Stud. 39, 100993. https://doi.org/10.1016/j.ejrh.2022.100993.
|
Wang, X., Yi, S., Wu, Q., Yang, K., Ding, Y., 2016. The role of permafrost and soil water in distribution of alpine grassland and its NDVI dynamics on the Qinghai-Tibetan Plateau. Global Planet. Change 147, 40-53. https://doi.org/10.1016/j.gloplacha.2016.10.014.
|
Wang, Y., Yang, H., Gao, B., Wang, T., Qin, Y., Yang, D., 2018. Frozen ground degradation may reduce future runoff in the headwaters of an inland river on the northeastern Tibetan Plateau. J. Hydrol. 564, 1153-1164. https://doi.org/10.1016/j.jhydrol.2018.07.078.
|
Wang, Y., Lu, M., Zhao, H., Gao, Z., 2021b. Analysis on soil water infiltration characteristics and mechanism in active layer in permafrost area of the Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 43(5), 1301-1311 (in Chinese). https://doi.org/10.7522/j.issn.1000-0240.2021.0084.
|
Wang, Y., Xie, X., Shi, J., Zhu, B., 2021c. Ensemble runoff modeling driven by multi-source precipitation products over the Tibetan Plateau. Chin. Sci. Bull. 66(32), 4169-4186 (in Chinese). https://doi.org/10.1360/TB-2020-1557.
|
Wei, C., Yu, S., Wu, J., Chou, Y., Peng, E., Leonid G., 2021. Soil hydrological process and migration mode influenced by the freeze-thaw process in the activity layer of permafrost regions in Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 184, 103236. https://doi.org/10.1016/j.coldregions.2021.103236.
|
Wu, Q., Hou, Y., Yun, H., Liu, Y., 2015. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China. Global Planet. Change 124, 149-155. https://doi.org/10.1016/j.gloplacha.2014.09.002.
|
Wu, X., Zhang, X., Xiang, X., Zhang, K., Jin, H., Chen, X., Wang, C., Shao, Q., Hua, W., 2018. Changing runoff generation in the source area of the yellow river: Mechanisms, seasonal patterns and trends. Cold Reg. Sci. Technol. 155, 58-68. https://doi.org/10.1016/j.coldregions.2018.06.014.
|
Xu, S., Yu, Z., Yang, C., Ji, X., Zhang, K., 2018. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agric. For. Meteorol. 263, 118-129. https://doi.org/10.1016/j.agrformet.2018.08.010.
|
Xu, S., Yu, Z., Lettenmaier, D., McVicar, T., Ji, X., 2020. Elevation-dependent response of vegetation dynamics to climate change in a cold mountainous region. Environ. Res. Lett. 15(9), 094005. https://doi.org/10.1088/1748-9326/ab9466.
|
Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., Chen, Y., 2014. Recent climate changes over the Tibetan plateau and their impacts on energy and water cycle: A review. Global Planet. Change 112, 79-91. https://doi.org/10.1016/j.gloplacha.2013.12.001.
|
Yang, Y., Wu, Q., Hou, Y., Zhang, P., Yun, H., Jin, H., Xu, X., Jiang, G., 2019. Using stable isotopes to illuminate thermokarst lake hydrology in permafrost regions on the Qinghai-Tibet Plateau, China. Permafr. Periglac. Process. 30(1), 58-71. https://doi.org/10.1002/ppp.1996.
|
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., et al., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663-667. https://doi.org/10.1038/nclimate1580.
|
Yao, T., Wu, F., Ding, L., Sun, J., Zhu, L., Piao, S., Deng, T., Ni, X., Zheng, H., Ouyang, H., 2015. Multispherical interactions and their effects on the Tibetan plateau's earth system: A review of the recent researches. Natl. Sci. Rev. 2(4), 468-488. https://doi.org/10.1093/nsr/nwv070.
|
Yao, T., Bolch, T., Chen, D., Gao, J., Immerzeel, W., Piao, S., Su, F., Thompson, L., Wada, Y., Wang, L., et al., 2022. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 3, 618-632. https://doi.org/10.1038/s43017-022-00299-4.
|
You, Y., Yu, Q., Pan, X., Wang, X., Guo, L., Wu, Q., 2017. Thermal effects of lateral supra-permafrost water flow around a thermokarst lake on the Qinghai-Tibet Plateau. Hydrol. Process. 31(13), 2429-2437. https://doi.org/10.1002/hyp.11193.
|
Yuan, F., Zhao, C., Jiang, Y., Ren, L., Shan, H., Zhang, L., Zhu, Y., Chen, T., Jiang, S., Yang, X., Shen, H., 2017. Evaluation on uncertainty sources in projecting hydrological changes over the Xijiang River basin in South China. J. Hydrol. 554, 434-450. https://doi.org/10.1016/j.jhydrol.2017.08.034.
|
Zhao, L., Zou, D., Hu, G., Wu, T., Du, E., Liu, G., Xiao, Y., Li, R., Pang, Q., Qiao, Y., Wu, X., Sun, Z., Xing, Z., Sheng, Y., Zhao, Y., Shi, J., Xie, C., Wang, L., Wang, C., Cheng, G., 2021. A synthesis dataset of permafrost thermal state for the Qinghai-Tibet (Xizang) Plateau, China, Earth Syst. Sci. Data 13, 4207-4218. https://doi.org/10.11888/Geocry.tpdc.271107.
|
211-1.jpg |