Volume 18 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
Min Li, Bo Liang, Jie-ming Liu, Jin Zhang, Bin Wang, Jie Shang. 2025: Trichoderma aureoviride hyphal pellets embedded in corncob-sodium alginate matrix for efficient uranium(VI) biosorption from aqueous solutions. Water Science and Engineering, 18(1): 51-58. doi: 10.1016/j.wse.2024.06.001
Citation: Min Li, Bo Liang, Jie-ming Liu, Jin Zhang, Bin Wang, Jie Shang. 2025: Trichoderma aureoviride hyphal pellets embedded in corncob-sodium alginate matrix for efficient uranium(VI) biosorption from aqueous solutions. Water Science and Engineering, 18(1): 51-58. doi: 10.1016/j.wse.2024.06.001

Trichoderma aureoviride hyphal pellets embedded in corncob-sodium alginate matrix for efficient uranium(VI) biosorption from aqueous solutions

doi: 10.1016/j.wse.2024.06.001
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No. 21968001).

  • Received Date: 2023-11-28
  • Accepted Date: 2024-05-13
  • Available Online: 2025-03-05
  • The discharge of effluents containing uranium (U) ions into aquatic ecosystems poses significant risks to both human health and marine organisms. This study investigated the biosorption of U(VI) ions from aqueous solutions using corncob-sodium alginate (SA)-immobilized Trichoderma aureoviride hyphal pellets. Experimental parameters, including initial solution pH, initial concentration, temperature, and contact time, were systematically examined to understand their influence on the bioadsorption process. Results showed that the corncob-SA-immobilized T. aureoviride hyphal pellets exhibited maximum uranium biosorption capacity at an initial pH of 6.23 and a contact time of 12 h. The equilibrium data aligned with the Langmuir isotherm model, with a maximum biosorption capacity of 105.60 mg/g at 301 K. Moreover, biosorption kinetics followed the pseudo-second-order kinetic model. In terms of thermodynamic parameters, the changes in Gibbs-free energy (△G°) were determined to be -4.29 kJ/mol at 301 K, the changes in enthalpy (△H°) were 46.88 kJ/mol, and the changes in entropy (△S°) was 164.98 J/(mol·K). Notably, the adsorbed U(VI) could be efficiently desorbed using Na2CO3, with a maximum readsorption efficiency of 53.6%. Scanning electron microscopic (SEM) analysis revealed U(VI) ion binding onto the hyphal pellet surface. This study underscores the efficacy of corncob-SA-immobilized T. aureoviride hyphal pellets as a cost-effective and environmentally favorable biosorbent material for removing U(VI) from aquatic ecosystems.

     

  • loading
  • Akar, T., Aydin, P., Celik, S., Tunali Akar, S., 2020. Phlebia gigantea cells immobilized on renewable biomass matrix as potential ecofriendly scavenger for lead contamination. Environ. Sci. Pollut. Res. 27, 16177-16188, https://doi.org/10.1007/s11356-020-07889-z.
    Akash, S., Sivaprakash, B., Raja, V.V., Rajamohan, N., Muthusamy, G., 2022. Remediation techniques for uranium removal from polluted environment - Review on methods, mechanism and toxicology. Environ. Pollut. 302, 119068, https://doi.org/10.1016/j.envpol.2022.119068.
    Banerjee, S., Kundu, A., Dhak, P., 2022. Bioremediation of uranium from waste effluents using novel biosorbents: A review. Journal of Radioanalytical and Nuclear Chemistry 331(6), 2409-2435, https://doi.org/10.1007/s10967-022-08304-2.
    Bayuo, J., Abukari, M.A., Pelig-Ba, K.B., 2020. Desorption of chromium(VI) and lead(II) ions and regeneration of the exhausted adsorbent. Appl. Water Sci. 10(7), 171, https://doi.org/10.1007/s13201-020-01250-y.
    Berber-Villamar, N.K., Netzahuatl-Munoz, A.R., Morales-Barrera, L., Chavez-Camarillo, G.M., Flores-Ortiz, C.M., Cristiani-Urbina, E., 2018. Corncob as an effective, eco-friendly, and economic biosorbent for removing the azo dye Direct Yellow 27 from aqueous solutions. PLoS ONE 13(4), e0196428, https://doi.org/10.1371/journal.pone.0196428.
    Bjoerklund, G., Semenova, Y., Pivina, L., Dadar, M., Rahman, M.M., Aaseth, J., Chirumbolo, S., 2020. Uranium in drinking water: A public health threat. Arch. Toxicol. 94, 1551-1560, https://doi.org/10.1007/s00204-020-02676-8.
    Buabidi, Z.B., El-Naas, M.H., Zhang, Z., 2019. Immobilization of microbial cells for the biotreatment of wastewater: A review. Environ. Chem. Lett. 17, 241-257, https://doi.org/10.1007/s10311-018-0795-7.
    Chen, C., Hu, J., Wang, J., 2020. Biosorption of uranium by immobilized Saccharomyces cerevisiae. J. Environ. Radioactiv. 213, 106158, https://doi.org/10.1016/j.jenvrad.2020.106158.
    Cui, Q., Zhang, Z., Beiyuan, J., Cui, Y., Chen, L., Chen, H., Fang, L., 2023. A critical review of uranium in the soil-plant system: Distribution, bioavailability, toxicity, and bioremediation strategies. Crit. Rev. Env. Sci. Tec. 53 (3), 340-365, https://doi.org/10.1080/10643389.2022.2054246.
    Ding, H., Luo, X., Zhang, X., Yang, H., 2019. Alginate-immobilized Aspergillus niger: Characterization and biosorption removal of thorium ions from radioactive wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects 562, 186-195, https://doi.org/10.1016/j.colsurfa.2018.11.032.
    Embaby, M.A., Haggag, E.S.A., El-Sheikh, A.S., Marrez, D.A., 2022. Biosorption of uranium from aqueous solution by green microalga Chlorella sorokiniana. Environ. Sci. Pollut. Res. 29(38), 58388-58404, https://doi.org/10.1007/s11356-022-19827-2.
    Ghoniem, A.A., El-Naggar, N.E.A., Saber, W.I., El-Hersh, M.S., El-Khateeb, A.Y., 2020. Statistical modeling-approach for optimization of Cu2+ biosorption by Azotobacter nigricans NEWG-1; characterization and application of immobilized cells for metal removal. Sci. Rep. 10(1), 9491, https://doi.org/10.1038/s41598-020-66101-x.
    Giese, E.C., Silva, D.D., Costa, A.F., Almeida, S.G., Dussan, K.J., 2020. Immobilized microbial nanoparticles for biosorption. Crit. Rev. Biotechnol. 40(5), 653-666, https://doi.org/10.1080/07388551.2020.1751583.
    Gkika, D.A., Mitrpoulos, A.C., Kyzas, G.Z., 2022. Why reuse spent adsorbents? The latest challenges and limitations. Sci. Total. Environ. 822, 153612, https://doi.org/10.1016/j.scitotenv.2022.153612.
    Gu, S., Lan, C.Q., 2023. Effects of culture pH on cell surface properties and biosorption of Pb(II), Cd(II), Zn(II) of green alga Neochloris oleoabundans. Chem. Eng. J. 468, 143579, https://doi.org/10.1016/j.cej.2023.143579.
    Haakonde, T., Yabe, J., Choongo, K., Chongwe, G., Islam, M.S., 2020. Preliminary assessment of uranium contamination in drinking water sources near a uranium mine in the Siavonga District, Zambia, and associated health risks. Mine Water Environ. 39(4), 735-745, https://doi.org/10.1007/s10230-020-00731-5.
    Hu, L., Chen, L., Wu, X., Luo, R., Lv, R., Fei, Z., Yang, F., 2024. Efficient removal of U(VI) from wastewater by a sponge-like 3D porous architecture with hybrid electrospun nanofibers. Water Sci. Eng. 17(2), 150-156, https://doi.org/10.1016/j.wse.2023.11.001.
    Jiang, Y., Yang, F., Dai, M., Ali, I., Shen, X., Hou, X., Alhewairini, S.S., Peng, C., Naz, I., 2022. Application of microbial immobilization technology for remediation of Cr(VI) contamination: A review. Chemosphere 286, 131721, https://doi.org/10.1016/j.chemosphere.2021.131721.
    Kim, S., Park, Y.H., Lee, J.B., Kim, H.S., Choi, Y.E., 2020. Phosphorus adsorption behavior of industrial waste biomass-based adsorbent, esterified polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers in aqueous solution. J. Hazard. Mater. 400, 123217, https://doi.org/10.1016/j.jhazmat.2020.123217.
    Legorreta-Castaneda, A.J., Lucho-Constantino, C.A., Beltran-Hernandez, R.I., Coronel-Olivares, C., Vazquez-Rodriguez, G.A., 2020. Biosorption of water pollutants by fungal pellets. Water 12(4), 1155, https://doi.org/10.3390/w12041155.
    Li, W., Yang, Y., Achal, V., 2022. Biochemical composite material using corncob powder as a carrier material for ureolytic bacteria in soil cadmium immobilization. Sci. Total. Environ. 802, 149802, https://doi.org/10.1016/j.scitotenv.2021.149802.
    Liu, F., Liu, H., Zhu, H., Xie, Y., Zhang, D., Cheng, Y., Zhang, J., Feng, R., Yang, S., 2023. Remediation of petroleum hydrocarbon-contaminated groundwater by biochar-based immobilized bacteria. Biochem. Eng. J. 197, 108987, https://doi.org/10.1016/j.bej.2023.108987.
    Ma, M., Wang, R., Xu, L., Xu, M., Liu, S., 2020. Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. Environ. Int. 145, 106107, https://doi.org/10.1016/j.envint.2020.106107.
    Mansour Abozaid, S., Shetaia, Y.M., Abdelbaky Rabie, K., Ahmed, B.M., Soliman, E.R., Samir Mohamed, S., 2021. Recovery of uranium from solutions using Aspergillus nidulans isolated from monazite mineral. International Journal of Environmental Analytical Chemistry 103(17), 5422-5452, https://doi.org/10.1080/03067319.2021.1939022.
    Nezhad, M.M., Semnani, A., Tavakkoli, N., Shirani, M., 2021a. Efficient removal and recovery of uranium from industrial radioactive wastewaters using functionalized activated carbon powder derived from zirconium carbide process waste. Environ. Sci. Pollut. Res. 28(40), 57073-57089, https://doi.org/10.1007/s11356-021-14638-3.
    Nezhad, M.M., Semnani, A., Tavakkoli, N., Shirani, M., 2021b. Selective and highly efficient removal of uranium from radioactive effluents by activated carbon functionalized with 2-aminobenzoic acid as a new sorbent. J. Environ. Manage. 299, 113587, https://doi.org/10.1016/j.jenvman.2021.113587.
    Paez-Velez, C., Castro-Mayorga, J.L., Dussan, J., 2020. Effective gold biosorption by electrospun and electrosprayed bio-composites with immobilized Lysinibacillus sphaericus CBAM5. Nanomaterials 10(3), 408, https://doi.org/10.3390/nano10030408.
    Pang, C., Liu, Y.H., Cao, X.H., Li, M., Huang, G.L., Hua, R., Wang, C.X., Liu, Y.T., An, X.F., 2011. Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum. Chem. Eng. J. 170(1), 1-6, https://doi.org/10.1016/j.cej.2010.10.068.
    Priya, A.K., Gnanasekaran, L., Dutta, K., Rajendran, S., Balakrishnan, D., Soto-Moscoso, M., 2022. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere 307, 135957, https://doi.org/10.1016/j.chemosphere.2022.135957.
    Samimi, M., Shahriari-Moghadam, M., 2021. Isolation and identification of Delftia lacustris strain-MS3 as a novel and efficient adsorbent for lead biosorption: Kinetics and thermodynamic studies, optimization of operating variables. Biochem. Eng. J. 173, 108091, https://doi.org/10.1016/j.bej.2021.108091.
    Saravanan, A., Karishma, S., Kumar, P.S., Varjani, S., Yaashikaa, P.R., Jeevanantham, S., Ramamurthy, R., Reshma, B., 2021. Simultaneous removal of Cu(II) and reactive green 6 dye from wastewater using immobilized mixed fungal biomass and its recovery. Chemosphere 271, 129519, https://doi.org/10.1016/j.chemosphere.2020.129519.
    Singhal, P., Vats, B.G., Pulhani, V., 2020. Magnetic nanoparticles for the recovery of uranium from sea water: Challenges involved from research to development. J. Ind. Eng. Chem. 90, 17-35, https://doi.org/10.1016/j.jiec.2020.07.035.
    Staron, P., Chwastowski, J. 2021. Raphia-microorganism composite biosorbent for lead ion removal from aqueous solutions. Materials 14(23), 7482, https://doi.org/10.3390/ma14237482.
    Torres, E., 2020. Biosorption: A review of the latest advances. Processes 8(12), 1584, https://doi.org/10.3390/pr8121584.
    Wang, Y., Liu, R., Liu, H., Li, X., Shen, L., Zhang, W., Song, X., Liu, W., Liu, X., Zhong, Y., 2022. Development of a powerful synthetic hybrid promoter to improve the cellulase system of Trichoderma reesei for efficient saccharification of corncob residues. Microb. Cell. Fact. 21, 5, https://doi.org/10.1186/s12934-021-01727-8.
    Yaashikaa, P.R., Kumar, P.S., Saravanan, A., Vo, D.V.N., 2021. Advances in biosorbents for removal of environmental pollutants: A review on pretreatment, removal mechanism and future outlook. J. Hazard. Mater. 420, 126596, https://doi.org/10.1016/j.jhazmat.2021.126596.
    Yadav, M., Rani, K., Sandal, N., Chauhan, M.K., 2022. An approach towards safe and sustainable use of the green alga Chlorella for removal of radionuclides and heavy metal ions. J. Appl. Phycol. 34(4), 2117-2133, https://doi.org/10.1007/s10811-022-02771-6.
    Yang, W., Pan, Q., Song, S., Zhang, H., 2019. Metal-organic framework-based materials for the recovery of uranium from aqueous solutions. Inorg. Chem. Front. 6(8), 1924-1937, https://doi.org/10.1039/C9QI00386J.
    Yu, Q., Yuan, Y., Feng, L., Sun, W., Lin, K., Zhang, J., Zhang, Y., Wang, H., Wang, N., Peng, Q., 2022. Highly efficient immobilization of environmental uranium contamination with Pseudomonas stutzeri by biosorption, biomineralization, and bioreduction. J. Hazard. Mater. 424, 127758, https://doi.org/10.1016/j.jhazmat.2021.127758.
    Zaki, A.G., Hasanien, Y.A., Abdel-Razek, A.S., 2022. Biosorption optimization of lead(II) and cadmium(II) ions by two novel nanosilica-immobilized fungal mutants. J. Appl. Microbiol. 133(2), 987-1000, https://doi.org/10.1111/jam.15624.
    Zin, N.A., Badaluddin, N.A., 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences 65(2), 168-178, https://doi.org/10.1016/j.aoas.2020.09.003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (2) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return