Volume 18 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
Shivani Gond, Ashish Kumar Agnihotri, Nitesh Gupta, P. K. S. Dikshit. 2025: Comprehensive analysis of characteristics of dry-wet events and their transitions in Uttar Pradesh, India. Water Science and Engineering, 18(1): 59-68. doi: 10.1016/j.wse.2024.06.003
Citation: Shivani Gond, Ashish Kumar Agnihotri, Nitesh Gupta, P. K. S. Dikshit. 2025: Comprehensive analysis of characteristics of dry-wet events and their transitions in Uttar Pradesh, India. Water Science and Engineering, 18(1): 59-68. doi: 10.1016/j.wse.2024.06.003

Comprehensive analysis of characteristics of dry-wet events and their transitions in Uttar Pradesh, India

doi: 10.1016/j.wse.2024.06.003
  • Received Date: 2023-11-29
  • Accepted Date: 2024-06-20
  • Available Online: 2025-03-05
  • Understanding the occurrence and characteristics of dry and wet events is crucial for effective disaster prevention, resource management, and risk reduction in vulnerable regions. This study analyzed the spatiotemporal patterns of dry-wet events and their transition characteristics in Uttar Pradesh, India. The standardized precipitation evapotranspiration index (SPEI) at a monthly timescale was utilized to identify hotspot regions vulnerable to concurrent and frequent dry and wet events and their transitions. The severity, duration, and intensity of dry and wet events were characterized with the run theory over SPEI time series data from 18 synoptic stations in Uttar Pradesh over 48 years (1971-2018), sourced from the Indian Institute of Tropical Meteorology and the India Meteorological Department. Multiple assessment methods were utilized to examine the interaction of these extreme events, considering characteristics such as wet-dry ratio, average transition time, and rapid transition times from wet to dry events and from dry to wet events. Average wet durations ranged from 1.27 to 1.58 months, and average dry durations ranged from 1.29 to 1.82 months. Rapid transition times from dry to wet events ranged from 2.5 to 4.1 months, and those for wet-to-dry events ranged from 2.1 to 5.3 months. The eastern region experienced a significantly high number of dry events, while the western and Bundelkhand regions experienced more intense dry events. In contrast, the eastern region had intense wet events. This research on the occurrence of dry-wet events and their transitions can provide valuable insights for government decision-making and disaster prevention and reduction efforts.

     

  • loading
  • Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Tank, A.M.G.K., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 111(D5), 2005JD006290, https://doi.org/10.1029/2005JD006290.
    Ansari, R., Grossi, G., 2022. Spatio-temporal evolution of wet-dry event features and their transition across the Upper Jhelum Basin (UJB) in South Asia. Nat. Hazards Earth Syst. Sci. 22(2), 287-302, https://doi.org/10.5194/nhess-22-287-2022.
    Begueria, S., Vicente-Serrano, S.M., Angulo-Martinez, M., 2010. A multiscalar global drought dataset: The SPEI base: A new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 91(10), 1351-1356, https://doi.org/10.1175/2010BAMS2988.1.
    Bhatt, D., Sonkar, G., Mall, R.K., 2019. Impact of climate variability on the rice yield in Uttar Pradesh: An agro-climatic zone based study. Environ. Process. 6, 135-153, https://doi.org/10.1007/s40710-019-00360-3.
    Chaurasia, P.R., Chandra, S., 2021. Bundelkhand water woes: Paradigm shift is needed in the strategy. J. Inst. Eng. India Ser. A 102, 335-345, https://doi.org/10.1007/s40030-020-00496-8.
    Chen, H., Wang, S., 2022. Accelerated transition between dry and wet periods in a warming climate. Geophys. Res. Lett. 49(19), e2022GL099766, https://doi.org/10.1029/2022GL099766.
    Christian, J., Christian, C., Basara, J.B., 2015. Drought and pluvial dipole events within the great plains of the United States. J. Appl. Meteorol. Climatol. 54(9), 1886-1898, https://doi.org/10.1175/JAMC-D-15-0002.1.
    De Luca, P., Messori, G., Wilby, R.L., Mazzoleni, M., Di Baldassarre, G., 2020. Concurrent wet and dry hydrological extremes at the global scale. Earth Syst. Dyn. 11(1), 251-266, https://doi.org/10.5194/esd-11-251-2020.
    Ge, Y., Cai, X., Zhu, T., Ringler, C., 2016. Drought frequency change: An assessment in northern India plains. Agric. Water Manag. 176, 111-121, https://doi.org/https://doi.org/10.1016/j.agwat.2016.05.015.
    Gond, S., Gupta, N., Dikshit, P.K.S., Patel, J., 2023. Assessment of drought variability using SPEI under observed and projected climate scenarios over Uttar Pradesh, India. Phys. Chem. Earth, Parts A/B/C 131, 103440, https://doi.org/10.1016/j.pce.2023.103440.
    Gupta, N., Banerjee, A., Gupta, S.K., 2021a. Spatio-temporal trend analysis of climatic variables over Jharkhand, India. Earth Syst. Environ. 5, 71-86, https://doi.org/10.1007/s41748-021-00204-x.
    Gupta, N., Gond, S., Gupta, S.K., 2022a. Spatiotemporal trend characteristics of rainfall and drought jeopardy over Bundelkhand Region, India. Arab. J. Geosci. 15, 1155, https://doi.org/10.1007/s12517-022-10389-8.
    Gupta, N., Mahato, P.K., Patel, J., Omar, P.J., Tripathi, R.P., 2022b. Understanding trend and its variability of rainfall and temperature over Patna (Bihar). Current Directions in Water Scarcity Research Vol. 7, 533-543, https://doi.org/10.1016/B978-0-323-91910-4.00030-3.
    Gupta, S.K., Gupta, N., Singh, V.P., 2021b. Variable-sized cluster analysis for 3D pattern characterization of trends in precipitation and change-point detection. J. Hydrol. Eng. 26(1), 04020056, https://doi.org/10.1061/(ASCE)HE.1943-5584.0002010.
    He, X., Sheffield, J., 2020. Lagged compound occurrence of droughts and pluvials globally over the past seven decades. Geophys. Res. Lett. 47(14), e2020GL087924, https://doi.org/10.1029/2020GL087924.
    Huang, C., Zhang, Q., Singh, V.P., Gu, X., Shi, P., 2017. Spatio-temporal variation of dryness/wetness across the Pearl River Basin, China, and relation to climate indices. Int. J. Climatol. 37(S1), 318-332, https://doi.org/10.1002/joc.5005.
    Krishnamurthy, V., Shukla, J., 2000. Intraseasonal and interannual variability of rainfall over India. J. Clim. 13, 4366-4377, https://doi.org/10.1175/1520-0442(2000)013<0001:IAIVOR>2.0.CO;2.
    Malik, A., Kumar, A., Kisi, O., Khan, N., Salih, S.Q., Yaseen, Z.M., 2021. Analysis of dry and wet climate characteristics at Uttarakhand (India) using effective drought index. Nat. Hazards 105, 1643-1662, https://doi.org/10.1007/s11069-020-04370-5.
    Mishra, V., Shah, H.L., 2018. Hydroclimatological perspective of the Kerala Flood of 2018. J. Geol. Soc. India 92, 645-650, https://doi.org/10.1007/s12594-018-1079-3.
    Nath, R., Cui, X., Nath, D., Graf, H.F., Chen, W., Wang, L., Gong, H., Li, Q., 2017. CMIP5 multimodel projections of extreme weather events in the humid subtropical Gangetic Plain region of India. Earths Future 5(2), 224-239, https://doi.org/10.1002/2016EF000482.
    Ojha, R., Kumar, D.N., Sharma, A., Mehrotra, R., 2013. Assessing severe drought and wet events over India in a future climate using a nested bias-correction approach. J. Hydrol. Eng. 18, 760-772, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000585.
    Pant, M., Ghosh, S., Verma, S., Sinha, P., Mall, R.K., Bhatla, R., 2021. Simulation of an extreme rainfall event over Mumbai using a regional climate model: A case study. Meteorol. Atmos. Phys. 134, 9, https://doi.org/10.1007/s00703-021-00845-7.
    Roxy, M.K., Ghosh, S., Pathak, A., Athulya, R., Mujumdar, M., Murtugudde, R., Terray, P., Rajeevan, M., 2017. A threefold rise in widespread extreme rain events over central India. Nat. Commun. 8, 708, https://doi.org/10.1038/s41467-017-00744-9.
    Santos, E.B., de Freitas, E.D., Rafee, S.A.A., Fujita, T., Rudke, A.P., Martins, L.D., de Souza, R.A.F., Martins, J.A., 2021. Spatio-temporal variability of wet and drought events in the Parana River basin-Brazil and its association with the El Nino-Southern oscillation phenomenon. Int. J. Climatol. 41(10), 4879-4897, https://doi.org/10.1002/joc.7104.
    Shan, L., Zhang, L., Song, J., Zhang, Y., She, D., Xia, J., 2018. Characteristics of dry-wet abrupt alternation events in the middle and lower reaches of the Yangtze River Basin and the relationship with ENSO. J. Geogr. Sci. 28, 1039-1058, https://doi.org/10.1007/s11442-018-1540-7.
    Sreeparvathy, V., Srinivas, V.V., 2022. Global assessment of spatiotemporal variability of wet, normal and dry conditions using multiscale entropy-based approach. Sci. Rep. 12, 9767, https://doi.org/10.1038/s41598-022-13830-w.
    Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D., et al., 2002. The drought monitor. Bull. Am. Meteorol. Soc. 83(8), 1181-1190, https://doi.org/10.1175/1520-0477-83.8.1181.
    Turner, A.G, Annamalai, H., 2012. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587-595, https://doi.org/10.1038/nclimate1495.
    Varikoden, H., Preethi, B., 2013. Wet and dry years of Indian summer monsoon and its relation with Indo-Pacific sea surface temperatures. Int. J. Climatol. 33(7), 1761-1771, https://doi.org/10.1002/joc.3547.
    Vicente-Serrano, S.M., Begueria, S., Lopez-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23(7), 1696-1718, https://doi.org/10.1175/2009JCLI2909.1.
    Wang, Y., Gao, R., Wang, X., Duan, L., Liu, T., Li, D., 2021. Long-term spatiotemporal variability in occurrences of wet and dry days across South Mongolian Plateau. Atmos. Res. 262, 105795, https://doi.org/10.1016/j.atmosres.2021.105795.
    Wu, Z., Li, J., He, H., Jiang, Z., 2006. Large-scale atmospheric singularities and summer long-cycle droughts-floods abrupt alternation in the middle and lower reaches of the Yangtze River. Chin. Sci. Bull. 51(14), 1717-1724, https://doi.org/10.1007/s11434-006-2060-x.
    Yang, T., Ding, J., Liu, D., Wang, X., Wang, T., 2019. Combined use of multiple drought indices for global assessment of dry gets drier and wet gets wetter paradigm. J. Clim. 32, 737-748, https://doi.org/10.1175/JCLI-D-18-0261.1.
    Yevjevich, V., 1969. An objective approach to definitions and investigations of continental hydrologic droughts. J. Hydrol. 7(3), 353, https://doi.org/10.1016/0022-1694(69)90110-3.
    Yoon, J., Wang, S., Lo, M., Wu, W., 2018. Concurrent increases in wet and dry extremes projected in Texas and combined effects on groundwater. Environ. Res. Lett. 13, 054002, https://doi.org/10.1088/1748-9326/aab96b.
    Zhang, Y., You, Q., Lin, H., Chen, C., 2015. Analysis of dry/wet conditions in the Gan River Basin, China, and their association with large-scale atmospheric circulation. Global Planet. Change 133, 309-317, https://doi.org/10.1016/j.gloplacha.2015.09.005.
    Zhou, P., Liu, Z., 2018. Likelihood of concurrent climate extremes and variations over China. Environ. Res. Lett. 13, 094023, https://doi.org/10.1088/1748-9326/aade9e.
    Zscheischler, J., Westra, S., van den Hurk, B.J.J.M., Seneviratne, S.I., Ward, P.J., Pitman, A., Aghakouchak, A., Bresch, D.N., Leonard, M., Wahl, T., et al., 2018. Future climate risk from compound events. Nat. Clim. Change 8, 469-477, https://doi.org/10.1038/s41558-018-0156-3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return