Citation: | Shivani Gond, Ashish Kumar Agnihotri, Nitesh Gupta, P. K. S. Dikshit. 2025: Comprehensive analysis of characteristics of dry-wet events and their transitions in Uttar Pradesh, India. Water Science and Engineering, 18(1): 59-68. doi: 10.1016/j.wse.2024.06.003 |
Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Tank, A.M.G.K., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 111(D5), 2005JD006290, https://doi.org/10.1029/2005JD006290.
|
Ansari, R., Grossi, G., 2022. Spatio-temporal evolution of wet-dry event features and their transition across the Upper Jhelum Basin (UJB) in South Asia. Nat. Hazards Earth Syst. Sci. 22(2), 287-302, https://doi.org/10.5194/nhess-22-287-2022.
|
Begueria, S., Vicente-Serrano, S.M., Angulo-Martinez, M., 2010. A multiscalar global drought dataset: The SPEI base: A new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 91(10), 1351-1356, https://doi.org/10.1175/2010BAMS2988.1.
|
Bhatt, D., Sonkar, G., Mall, R.K., 2019. Impact of climate variability on the rice yield in Uttar Pradesh: An agro-climatic zone based study. Environ. Process. 6, 135-153, https://doi.org/10.1007/s40710-019-00360-3.
|
Chaurasia, P.R., Chandra, S., 2021. Bundelkhand water woes: Paradigm shift is needed in the strategy. J. Inst. Eng. India Ser. A 102, 335-345, https://doi.org/10.1007/s40030-020-00496-8.
|
Chen, H., Wang, S., 2022. Accelerated transition between dry and wet periods in a warming climate. Geophys. Res. Lett. 49(19), e2022GL099766, https://doi.org/10.1029/2022GL099766.
|
Christian, J., Christian, C., Basara, J.B., 2015. Drought and pluvial dipole events within the great plains of the United States. J. Appl. Meteorol. Climatol. 54(9), 1886-1898, https://doi.org/10.1175/JAMC-D-15-0002.1.
|
De Luca, P., Messori, G., Wilby, R.L., Mazzoleni, M., Di Baldassarre, G., 2020. Concurrent wet and dry hydrological extremes at the global scale. Earth Syst. Dyn. 11(1), 251-266, https://doi.org/10.5194/esd-11-251-2020.
|
Ge, Y., Cai, X., Zhu, T., Ringler, C., 2016. Drought frequency change: An assessment in northern India plains. Agric. Water Manag. 176, 111-121, https://doi.org/https://doi.org/10.1016/j.agwat.2016.05.015.
|
Gond, S., Gupta, N., Dikshit, P.K.S., Patel, J., 2023. Assessment of drought variability using SPEI under observed and projected climate scenarios over Uttar Pradesh, India. Phys. Chem. Earth, Parts A/B/C 131, 103440, https://doi.org/10.1016/j.pce.2023.103440.
|
Gupta, N., Banerjee, A., Gupta, S.K., 2021a. Spatio-temporal trend analysis of climatic variables over Jharkhand, India. Earth Syst. Environ. 5, 71-86, https://doi.org/10.1007/s41748-021-00204-x.
|
Gupta, N., Gond, S., Gupta, S.K., 2022a. Spatiotemporal trend characteristics of rainfall and drought jeopardy over Bundelkhand Region, India. Arab. J. Geosci. 15, 1155, https://doi.org/10.1007/s12517-022-10389-8.
|
Gupta, N., Mahato, P.K., Patel, J., Omar, P.J., Tripathi, R.P., 2022b. Understanding trend and its variability of rainfall and temperature over Patna (Bihar). Current Directions in Water Scarcity Research Vol. 7, 533-543, https://doi.org/10.1016/B978-0-323-91910-4.00030-3.
|
Gupta, S.K., Gupta, N., Singh, V.P., 2021b. Variable-sized cluster analysis for 3D pattern characterization of trends in precipitation and change-point detection. J. Hydrol. Eng. 26(1), 04020056, https://doi.org/10.1061/(ASCE)HE.1943-5584.0002010.
|
He, X., Sheffield, J., 2020. Lagged compound occurrence of droughts and pluvials globally over the past seven decades. Geophys. Res. Lett. 47(14), e2020GL087924, https://doi.org/10.1029/2020GL087924.
|
Huang, C., Zhang, Q., Singh, V.P., Gu, X., Shi, P., 2017. Spatio-temporal variation of dryness/wetness across the Pearl River Basin, China, and relation to climate indices. Int. J. Climatol. 37(S1), 318-332, https://doi.org/10.1002/joc.5005.
|
Krishnamurthy, V., Shukla, J., 2000. Intraseasonal and interannual variability of rainfall over India. J. Clim. 13, 4366-4377, https://doi.org/10.1175/1520-0442(2000)013<0001:IAIVOR>2.0.CO;2.
|
Malik, A., Kumar, A., Kisi, O., Khan, N., Salih, S.Q., Yaseen, Z.M., 2021. Analysis of dry and wet climate characteristics at Uttarakhand (India) using effective drought index. Nat. Hazards 105, 1643-1662, https://doi.org/10.1007/s11069-020-04370-5.
|
Mishra, V., Shah, H.L., 2018. Hydroclimatological perspective of the Kerala Flood of 2018. J. Geol. Soc. India 92, 645-650, https://doi.org/10.1007/s12594-018-1079-3.
|
Nath, R., Cui, X., Nath, D., Graf, H.F., Chen, W., Wang, L., Gong, H., Li, Q., 2017. CMIP5 multimodel projections of extreme weather events in the humid subtropical Gangetic Plain region of India. Earths Future 5(2), 224-239, https://doi.org/10.1002/2016EF000482.
|
Ojha, R., Kumar, D.N., Sharma, A., Mehrotra, R., 2013. Assessing severe drought and wet events over India in a future climate using a nested bias-correction approach. J. Hydrol. Eng. 18, 760-772, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000585.
|
Pant, M., Ghosh, S., Verma, S., Sinha, P., Mall, R.K., Bhatla, R., 2021. Simulation of an extreme rainfall event over Mumbai using a regional climate model: A case study. Meteorol. Atmos. Phys. 134, 9, https://doi.org/10.1007/s00703-021-00845-7.
|
Roxy, M.K., Ghosh, S., Pathak, A., Athulya, R., Mujumdar, M., Murtugudde, R., Terray, P., Rajeevan, M., 2017. A threefold rise in widespread extreme rain events over central India. Nat. Commun. 8, 708, https://doi.org/10.1038/s41467-017-00744-9.
|
Santos, E.B., de Freitas, E.D., Rafee, S.A.A., Fujita, T., Rudke, A.P., Martins, L.D., de Souza, R.A.F., Martins, J.A., 2021. Spatio-temporal variability of wet and drought events in the Parana River basin-Brazil and its association with the El Nino-Southern oscillation phenomenon. Int. J. Climatol. 41(10), 4879-4897, https://doi.org/10.1002/joc.7104.
|
Shan, L., Zhang, L., Song, J., Zhang, Y., She, D., Xia, J., 2018. Characteristics of dry-wet abrupt alternation events in the middle and lower reaches of the Yangtze River Basin and the relationship with ENSO. J. Geogr. Sci. 28, 1039-1058, https://doi.org/10.1007/s11442-018-1540-7.
|
Sreeparvathy, V., Srinivas, V.V., 2022. Global assessment of spatiotemporal variability of wet, normal and dry conditions using multiscale entropy-based approach. Sci. Rep. 12, 9767, https://doi.org/10.1038/s41598-022-13830-w.
|
Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D., et al., 2002. The drought monitor. Bull. Am. Meteorol. Soc. 83(8), 1181-1190, https://doi.org/10.1175/1520-0477-83.8.1181.
|
Turner, A.G, Annamalai, H., 2012. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587-595, https://doi.org/10.1038/nclimate1495.
|
Varikoden, H., Preethi, B., 2013. Wet and dry years of Indian summer monsoon and its relation with Indo-Pacific sea surface temperatures. Int. J. Climatol. 33(7), 1761-1771, https://doi.org/10.1002/joc.3547.
|
Vicente-Serrano, S.M., Begueria, S., Lopez-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23(7), 1696-1718, https://doi.org/10.1175/2009JCLI2909.1.
|
Wang, Y., Gao, R., Wang, X., Duan, L., Liu, T., Li, D., 2021. Long-term spatiotemporal variability in occurrences of wet and dry days across South Mongolian Plateau. Atmos. Res. 262, 105795, https://doi.org/10.1016/j.atmosres.2021.105795.
|
Wu, Z., Li, J., He, H., Jiang, Z., 2006. Large-scale atmospheric singularities and summer long-cycle droughts-floods abrupt alternation in the middle and lower reaches of the Yangtze River. Chin. Sci. Bull. 51(14), 1717-1724, https://doi.org/10.1007/s11434-006-2060-x.
|
Yang, T., Ding, J., Liu, D., Wang, X., Wang, T., 2019. Combined use of multiple drought indices for global assessment of dry gets drier and wet gets wetter paradigm. J. Clim. 32, 737-748, https://doi.org/10.1175/JCLI-D-18-0261.1.
|
Yevjevich, V., 1969. An objective approach to definitions and investigations of continental hydrologic droughts. J. Hydrol. 7(3), 353, https://doi.org/10.1016/0022-1694(69)90110-3.
|
Yoon, J., Wang, S., Lo, M., Wu, W., 2018. Concurrent increases in wet and dry extremes projected in Texas and combined effects on groundwater. Environ. Res. Lett. 13, 054002, https://doi.org/10.1088/1748-9326/aab96b.
|
Zhang, Y., You, Q., Lin, H., Chen, C., 2015. Analysis of dry/wet conditions in the Gan River Basin, China, and their association with large-scale atmospheric circulation. Global Planet. Change 133, 309-317, https://doi.org/10.1016/j.gloplacha.2015.09.005.
|
Zhou, P., Liu, Z., 2018. Likelihood of concurrent climate extremes and variations over China. Environ. Res. Lett. 13, 094023, https://doi.org/10.1088/1748-9326/aade9e.
|
Zscheischler, J., Westra, S., van den Hurk, B.J.J.M., Seneviratne, S.I., Ward, P.J., Pitman, A., Aghakouchak, A., Bresch, D.N., Leonard, M., Wahl, T., et al., 2018. Future climate risk from compound events. Nat. Clim. Change 8, 469-477, https://doi.org/10.1038/s41558-018-0156-3.
|