Volume 18 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
Pei-de Liang, Jun Chen, Teng Wu, Jing Yan. 2025: Hydraulic characteristics of a large rotation-angle baffle-drop shaft through synergetic discharge from dry and wet sides. Water Science and Engineering, 18(1): 115-124. doi: 10.1016/j.wse.2024.08.002
Citation: Pei-de Liang, Jun Chen, Teng Wu, Jing Yan. 2025: Hydraulic characteristics of a large rotation-angle baffle-drop shaft through synergetic discharge from dry and wet sides. Water Science and Engineering, 18(1): 115-124. doi: 10.1016/j.wse.2024.08.002

Hydraulic characteristics of a large rotation-angle baffle-drop shaft through synergetic discharge from dry and wet sides

doi: 10.1016/j.wse.2024.08.002
Funds:

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFD1700802).

  • Received Date: 2024-03-20
  • Accepted Date: 2024-08-16
  • Available Online: 2025-03-05
  • To enhance the operational capacity and space utilization of baffle-drop shafts, this study improved the traditional baffle-drop shaft by expanding the wet-side space, incorporating large rotation-angle baffles, and installing overflow holes in the dividing wall. A three-dimensional turbulent model was developed using ANSYS Fluent to simulate the hydraulic characteristics of both traditional and new baffle-drop shafts across various flow rates. The simulation results demonstrated that the new shaft design allowed for discharge from both the wet and dry sides, significantly improving operational capacity, with the dry side capable of handling 40% of the inlet flow. Compared to the traditional shaft, the new design reduced shaft wall pressures and decreased the mean and standard deviation of pressure on typical baffles by 21% and 63%, respectively, therefore enhancing structural safety. Additionally, the new shaft achieved a 2%-12% higher energy dissipation rate than the traditional shaft across different flow rates. This study offers valuable insights for the design and optimization of drop shafts in deep tunnel drainage systems.

     

  • loading
  • ANSYS, 2012. ANSYS FLUENT Theory Guide. ANSYS, Inc., Canonsburg.
    Camino, G.A., Rajaratnam, N., Zhu, D.Z., 2014. Choking conditions inside plunging flow dropshafts. Can. J. Civ. Eng.,41(7), 624-632, https://doi.org/10.1139/cjce-2014-0033.
    Chang, L., Wei, W., 2022a. Numerical investigation of the plunging and vortex-flow regimes occurring in drop shafts with a tangential intake. J. Irrigat. Drain. Eng. 148(8), 04022026, https://doi.org/10.1061/(ASCE)IR.1943-4774.0001692.
    Chang, L., Wei, W., 2022b. Numerical study on the effect of tangential intake on vortex dropshaft assessment using pressure distributions. Eng. Appl. Comput. Fluid Mech.,16(1), 1100-1110, https://doi.org/10.1080/19942060.2022.2072954.
    Chen, J., Lu, Y., Tang, H., Yan, J., 2022. Hydraulic characteristics of a new symmetrical baffle-drop shaft. Chin. J. Hydrodyn.,37(1), 73-83 (in Chinese), https://doi.org/10.16076/j.cnki.cjhd.2022.01.010.
    Granata, F., 2016. Dropshaft cascades in urban drainage systems. Water Sci. Technol. 73(9), 2052-2059, https://doi.org/10.2166/wst.2016.051.
    Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.,39(1), 201-225, https://doi.org/10.1016/0021-9991(81)90145-5.
    Kennedy, J.F., Jain, S.C., Quinones, R.R., 1988. Helicoidal-ramp dropshaft. J. Hydraul. Eng.,114(3), 315-325, https://doi.org/10.1061/(ASCE)0733-9429(1988)114:3(315).
    Kheirkhah Gildeh, H., Mohammadian, A., Nistor, I., Qiblawey, H., 2014. Numerical modeling of turbulent buoyant wall jets in stationary ambient water. J. Hydraul. Eng.,140(6), 04014012, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000871.
    Li, C., Lu, T., Fu, B., Wang, S., Holden, J., 2022. Sustainable city development challenged by extreme weather in a warming world. Geogr. Sustain.,3(2), 114-118, https://doi.org/10.1016/j.geosus.2022.04.001.
    Li, W., Zhang, J., Sun, R., Duan, Q., 2023. Evaluation of Tianji and ECMWF high-resolution precipitation forecasts for extreme rainfall event in Henan in July 2021. Water Sci. Eng.16(2), 122-131, https://doi.org/10.1016/j.wse.2022.11.002.
    Liu, W., Feng, Q., Engel, B.A., Yu, T., Zhang, X., Qian, Y., 2023. A probabilistic assessment of urban flood risk and impacts of future climate change. J. Hydrol.,618, 129267, https://doi.org/10.1016/j.jhydrol.2023.129267.
    Liu, Z., Guo, X., Xia, Q., Fu, H., Wang, T., Dong, X., 2018. Experimental and numerical investigation of flow in a newly developed vortex drop shaft spillway. J. Hydraul. Eng.,144(5), 04018014. http://doi.org/10.1061/(ASCE)HY.1943-7900.0001444.
    Luo, H., Oberg, N., Landry, B.J., Garcia, M.H., 2021. Assessing the system performance of an evolving and integrated urban drainage system to control combined sewer overflows using a multiple-layer based coupled modeling approach. J. Hydrol.,603, 127130, https://doi.org/10.1016/j.jhydrol.2021.127130.
    Lyons, T.C., Odgaard, A.J., 2010. reportHydraulic Model Studies for the Regional Municipality of York Southeast Collector Drop Structures. IIHR LDR Report No. 365. University of Iowa, Iowa City.
    Lyons, T.C., Odgaard, A.J., Craig, A., 2011. reportBaffle Drop Structure Design and Hydraulic Model Studies for the City of Indianapolis Fall Creek/White River Tunnel System. IIHR LDR Report No. 372. University of Iowa, Iowa City.
    Ma, Y.L., Wang, H.Y., Fu, Z.F., Xu, H., Chen, Y.L., 2020. Numerical simulation of discharge characteristics of inside wet outside dry baffle-dropshaft. Water Resour. Power,38(1), 108-111 (in Chinese).
    Margevicius, A., Schreiber, A., Switalski, R., Lyons, T., Benton, S., Glovick, S., 2010. A baffling solution to a complex problem involving sewage drop structures. In: Proceedings of the Water Environment Federation. Water Environment Federation, Alexandria, pp. 1-9, https://doi.org/10.2175/193864710798216279.
    Mohsin, M., Kaushal, D.R., 2016. 3D CFD validation of invert trap efficiency for sewer solid management using VOF model. Water Sci. Eng.,9(2), 106-114, https://doi.org/10.1016/j.wse.2016.06.006.
    Odgaard, A.J., Lyons, T.C., Craig, A.J., 2013. Baffle-drop structure design relationships. J. Hydraul. Eng.,139(9), 995-1002, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000761.
    Park, C., Son, S.W., Kim, H., Ham, Y.G., Kim, J., Cha, D.H., Chang, E.C., Lee, G., Kug, J.S., Lee, W.S., et al., 2021. Record-breaking summer rainfall in South Korea in 2020: Synoptic characteristics and the role of large-scale circulations. Mon. Weather Rev.,149(9), 3085-3100, https://doi.org/10.1175/MWR-D-21-0051.1.
    Peng, R., Liu, J., Huang, B., Yu, X., Zhu, D.Z., 2024. Numerical study on hydraulic characteristics of rotating stepped dropshafts in deep urban tunnels. Water Sci. Technol.,89(3), 653-669, https://doi.org/10.2166/wst.2024.012.
    Ren, W., Wu, J., Ma, F., 2019. Experimental investigation of helical-step dropshaft hydraulics. In: Proceedings of the 38th IAHR World Congress. IAHR, Panama City, pp. 409-415, https://doi.org/10.3850/38WC092019-0224.
    Ren, W., Wu, J., Ma, F., Qian, S., 2021. Hydraulic performance of helical-step dropshaft. Water Sci. Technol. 84(4), 954-965, https://doi.org/10.2166/wst.2021.295.
    Rubinato, M., Nichols, A., Peng, Y., Zhang, J., Lashford, C., Cai, Y., Lin, P., Tait, S., 2019. Urban and river flooding: Comparison of flood risk management approaches in the UK and China and an assessment of future knowledge needs. Water Sci. Eng. 12(4), 274-283, https://doi.org/10.1016/j.wse.2019.12.004.
    Savage Bruce, M., Crookston Brian, M., Paxson Greg, S., 2016. Physical and numerical modeling of large headwater ratios for a 15° labyrinth spillway. J. Hydraul. Eng. 142(11), 04016046, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001186.
    Shen, J., Wu, J., Ma, F., 2019. Hydraulic characteristics of stepped spillway dropshafts. Sci. China Technol. Sci. 62(5), 868-874, https://doi.org/10.1007/s11431-018-9366-0.
    Stirrup, M., Margevicius, T., Hrkac, T., Baca, A., 2012. A baffling solution to sewage conveyance in York Region, Ontario. In: Proceedings of the Water Environment Federation. Water Environment Federation, Alexandria.
    Sun, J.K., Qian, S.T., Xu, H., Wang, X.S., Feng, J.G., 2021. Three-dimensional numerical simulation of stepped dropshaft with different step shapes. Water Supply 21(2), 581-592, https://doi.org/10.2166/ws.2020.336.
    Tang, G., Chen, C., Zhao, M., Lu, L., 2015. Numerical simulation of flow past twin near-wall circular cylinders in tandem arrangement at low Reynolds number. Water Sci. Eng. 8(4), 315-325, https://doi.org/10.1016/j.wse.2015.06.002.
    Vasconcelos, J.G., Wright, S.J., 2017. Anticipating transient problems during the rapid filling of deep stormwater storage tunnel systems. J. Hydraul. Eng. 143(3), 06016025, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001250.
    Wang, B., Li, J., Cheng, Y., 2023. Research on the design of the inflow shaft with symmetrically colliding water tongues in the deep tunnel drainage system. China Rural Water Hydropower 2023(3), 138-143 (in Chinese), https://doi.org/10.12396/znsd.220819.
    Wang, X., Zhang, J., Fu, Z., Xu, H., Xu, T., Zhou, C., 2020. Influences of flow rate and baffle spacing on hydraulic characteristics of a novel baffle dropshaft. Water Sci. Eng. 13(5), 233-242, https://doi.org/10.1016/j.wse.2020.09.001.
    Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V., 2012. Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. Atmos. Res.,103, 106-118, https://doi.org/10.1016/j.atmosres.2011.04.003.
    Wu, H., Huang, G., Meng, Q., Zhang, M., Li, L., 2016. Deep tunnel for regulating combined sewer overflow pollution and flood disaster: A case study in guangzhou city, China. Water,8(8), 329, https://doi.org/10.3390/w8080329.
    Yang, Q., Yang, Q., 2020. Experimental investigation of hydraulic characteristics and energy dissipation in a baffle-drop shaft. Water Sci. Technol.,82(8), 1603-1613, https://doi.org/10.2166/wst.2020.441.
    Yang, Q., Yang, Q., 2021. Numerical investigation of the turbulence characteristics and energy dissipation mechanism of baffle drop shafts. Water Sci. Technol.,83(9), 2259-2270, https://doi.org/10.2166/wst.2021.137.
    Zhao, C.H., Zhu, D.Z., Sun, S.K., Liu, Z.P., 2006. Experimental study of flow in a vortex dropshaft. J. Hydraul. Eng. 132(1), 61-68, https://doi.org/10.1061/(ASCE)0733-9429(2006)13:21(61).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (3) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return