Volume 18 Issue 2
Jun.  2025
Turn off MathJax
Article Contents
Sin Ling Chiam, Swee-Yong Pung, Chee Meng Koe, Fei Yee Yeoh. 2025: Immobilization of MnO2 nanoflowers on coils using direct heating method for organic pollutant remediation. Water Science and Engineering, 18(2): 165-176. doi: 10.1016/j.wse.2024.09.001
Citation: Sin Ling Chiam, Swee-Yong Pung, Chee Meng Koe, Fei Yee Yeoh. 2025: Immobilization of MnO2 nanoflowers on coils using direct heating method for organic pollutant remediation. Water Science and Engineering, 18(2): 165-176. doi: 10.1016/j.wse.2024.09.001

Immobilization of MnO2 nanoflowers on coils using direct heating method for organic pollutant remediation

doi: 10.1016/j.wse.2024.09.001
Funds:

This work was supported by Ministry of Higher Education, Malaysia, through the Fundamental Research Grant Scheme (FRGS) (Grant No. FRGS/1/2020/TK0/USM/02/27).

  • Received Date: 2023-12-19
  • Accepted Date: 2024-08-29
  • Available Online: 2025-06-24
  • The immobilization of catalysts on supporting substrates for the removal of organic pollutants is a crucial strategy for mitigating catalyst loss during wastewater treatment. This study presented a rapid and cost-effective direct heating method for synthesizing MnO2 nanoflowers on coil substrates for the removal of organic pollutants. Traditional methods often require high power, expensive equipment, and long synthesis times. In contrast, the direct heating approach successfully synthesized MnO2 nanoflowers in just 10 min with a heating power of approximately 40 W·h after the heating power and duration were optimized. These nanoflowers effectively degraded 99% Rhodamine B in 60 min with consistent repeatability. The catalytic mechanisms are attributed to crystal defects in MnO2, which generate electrons to produce H2O2. Mn2+ ions in the acidic solution further dissociate H2O2 molecules into hydroxyl radicals (·OH). The high efficiency of this synthesis method and the excellent reusability of MnO2 nanoflowers highlight their potential as a promising solution for the development of supporting MnO2 catalysts for organic dye removal applications.

     

  • loading
  • [1]
    Ardani, M.R., Pang, A.L., Pal, U., Zheng, R., Arsad, A., Hamzah, A.A., Ahmadipour, M., 2022. Ultrasonic-assisted polyaniline-multiwall carbon nanotube photocatalyst for efficient photodegradation of organic pollutants. Journal of Water Process Engineering 46, 102557. https://doi.org/10.1016/j.jwpe.2021.102557.
    [2]
    Bakhtiarzadeh, Z., Rouhani, S., Karimi, Z., Rostamnia, S., Msagati, T.A.M., Kim, D., Jang, H.W., Ramakrishan, S., Varma, R.S., Shokouhimehr, M., 2021. Hydrothermal self-sacrificing growth of polymorphous MnO2 on magnetic porous-carbon (Fe3O4@Cg/MnO2): A sustainable nanostructured catalyst for activation of molecular oxygen. Molecular Catalysis 509, 111603. https://doi.org/10.1016/j.mcat.2021.111603.
    [3]
    Barreca, D., Gri, F., Gasparotto, A., Carraro, G., Bigiani, L., Altantzis, T., Zener, B., Stangar, U., Alessi, B., Padmanaban, D.B., et al., 2019. Multi-functional MnO2 nanomaterials for photo-activated applications by a plasma-assisted fabrication route. Nanoscale 11(1), 98-108. https://doi.org/10.1039/C8NR06468G.
    [4]
    Beura, R., Pachaiappan, P., Paramasivam, T., 2021. Photocatalytic degradation studies of organic dyes over novel Ag-loaded ZnO-graphene hybrid nanocomposites. Journal of Physics and Chemistry of Solids, 148, 109689. https://doi.org/10.1016/j.jpcs.2020.109689.
    [5]
    Celebi, N., Aydin, M.Y., Soysal, F., Ciftci, Y.O., Salimi, K., 2021. Ligand-free fabrication of Au/TiO2 nanostructures for plasmonic hot-electron-driven photocatalysis: Photoelectrochemical water splitting and organic-dye degredation. Journal of Alloys and Compounds 860, 157908. https://doi.org/10.1016/j.jallcom.2020.157908.
    [6]
    Chan, Y.L., Pung, S.Y., Sreekantan, S., Yeoh, F.Y., 2016. Photocatalytic activity of β-MnO2 nanotubes grown on PET fibre under visible light irradiation. Journal of Experimental Nanoscience 11(8), 603-618. https://doi.org/10.1080/17458080.2015.1102342.
    [7]
    Chiam, S.L., Pung, S.Y., Yeoh, F.Y., 2020. Recent developments in MnO2-based photocatalysts for organic dye removal: A review. Environmental Science and Pollution Research 27(6), 5759-5778. https://doi.org/10.1007/s11356-019-07568-8.
    [8]
    Chiam, S.L., Pung, S.Y., Yeoh, F.Y., Ahmadipour, M., 2022. Highly efficient oxidative degradation of organic dyes by manganese dioxide nanoflowers. Materials Chemistry and Physics 280, 125848. https://doi.org/10.1016/j.matchemphys.2022.125848.
    [9]
    Dhokpande, S.R., Deshmukh, S.M., Khandekar, A., Sankhe, A., 2024. A review outlook on methods for removal of heavy metal ions from wastewater. Separation and Purification Technology 350, 127868. https://doi.org/10.1016/j.seppur.2024.127868.
    [10]
    Dolatyari, L., Shateri, M., Yaftian, M.R., Rostamnia, S., 2019. Unmodified SBA-15 adsorbents for the removal and separation of Th(IV) and U(VI) ions: The role of pore channels and surface-active sites. Separation Science and Technology 54(17), 2863-2878. https://doi.org/10.1080/01496395.2018.1556297.
    [11]
    Dong, C., Liu, Z., Liu, J., Wang, W., Cui, L., Luo, R., Guo, H., Zheng, X., Qiao, S., Du, X., et al., 2017. Modest oxygen-defective amorphous manganese-based nanoparticle mullite with superior overall electrocatalytic performance for oxygen reduction reaction. Small 13(16), 1603903. https://doi.org/10.1002/smll.201603903.
    [12]
    Ebrahimi, A., Jafari, N., Ebrabimpour, K., Karimi, M., Rostamnia, S., Behnami, A., Ghanbari, R., Mohammadi, A., Rahimi, B., Abdolahnejad, A., 2021. A novel ternary heterogeneous TiO2/BiVO4/NaY-zeolite nanocomposite for photocatalytic degradation of microcystin-leucine arginine (MC-LR) under visible light. Ecotoxicology and Environmental Safety 210, 111862. https://doi.org/10.1016/j.ecoenv.2020.111862.
    [13]
    Elbasuney, S., Elsayed, M.A., Mostafa, S.F., Khalil, W.F., 2019. MnO2 nanoparticles supported on porous Al2O3 substrate for wastewater treatment: Synergy of adsorption, oxidation, and photocatalysis. Journal of Inorganic and Organometallic Polymers and Materials 29, 827-840. https://doi.org/10.1007/s10904-018-01057-0.
    [14]
    Eshghi, F., Mehrabadi, Z., Farsadrooh, M., Hayati, P., Javadian, H., Karimi, M., Karimi-Maleh, H., Rostamnia, S., Karaman, C., Aghabahaei, F., 2023. Photocatalytic degradation of remdesivir nucleotide pro-drug using [Cu(1-methylimidazole)4 (SCN)2] nanocomplex synthesized by sonochemical process: Theoretical, hirshfeld surface analysis, degradation kinetic, and thermodynamic studies. Environmental Research 222, 115321. https://doi.org/10.1016/j.envres.2023.115321.
    [15]
    Gagrani, A., Zhou, J., Tsuzuki, T., 2018. Solvent free mechanochemical synthesis of MnO2 for the efficient degradation of Rhodamine-B. Ceramics International 44(5), 4694-4698. https://doi.org/10.1016/j.ceramint.2017.12.050.
    [16]
    Ge, Y., Luo, H., Huang, J., Zhang, Z., 2021. Visible-light-active TiO2 photocatalyst for efficient photodegradation of organic dyes. Optical Materials 115, 111058. https://doi.org/10.1016/j.optmat.2021.111058.
    [17]
    Gong, W., Meng, X., Tang, X., Ji., P., 2017. Core-shell MnO2-SiO2 nanorods for catalyzing the removal of dyes from water. Catalysts 7(1), 19. https://doi.org/10.3390/catal70100194.
    [18]
    Hayati, P., Mehrabadi, Z., Karimi, M., Janczak, J., Mohammadi, K., Mahmoudi, G., Dadi, F., Fard, M.J.S., Hasanzadeh, A., Rostamnia, S., 2021. Photocatalytic activity of new nanostructures of an Ag(I) metal-organic framework (Ag-MOF) for the efficient degradation of MCPA and 2,4-D herbicides under sunlight irradiation. New Journal of Chemistry 45(7), 3408-3417. https://doi.org/10.1039/D0NJ02460K.
    [19]
    Hoseinpour, V., Souri, M., Ghaemi, N., 2018. Green synthesis, characterisation, and photocatalytic activity of manganese dioxide nanoparticles. Micro & Nano Letters 13(11), 1560-1563. https://doi.org/10.1049/mnl.2018.5008.
    [20]
    Huang, C., Wang, Y., Gong, M., Wang, W., Mu, Y., Hu, Z., 2020. α-MnO2/palygorskite composite as an effective catalyst for heterogeneous activation of peroxymonosulfate (PMS) for the degradation of Rhodamine B. Separation and Purification Technology 230, 115877. https://doi.org/10.1016/j.seppur.2019.115877.
    [21]
    Huang, Y., Tian, X., Nie, Y., Yang, C., Wang, Y., 2018. Enhanced peroxymonosulfate activation for phenol degradation over MnO2 at pH 3.5-9.0 via Cu(II) substitution. Journal of Hazardous Materials 360, 303-310. https://doi.org/10.1016/j.jhazmat.2018.08.028.
    [22]
    Hutagalung, S., Muchlis, I., Khotimah, K., 2020. Textile wastewater treatment using advanced oxidation process (AOP). IOP Conference Series: Materials Science and Engineering 722, 012032. https://doi.org/10.1088/1757-899X/722/1/012032.
    [23]
    Iqbal, M.S., Aslam, A.A., Iftikhar, R., Junaid, M., Imran, S.M., Nazir, M.S., Ali, Z., Zafar, M., Kanwal, A., Othman, N.K., et al., 2023. The potential of functionalized graphene-based composites for removing heavy metals and organic pollutants. Journal of Water Process Engineering 53, 103809. https://doi.org/10.1016/j.jwpe.2023.103809.
    [24]
    Kurniati, S., Kurniati, S., Linggawati, A., Siregar, S.S., Awaluddin, A., 2019. The tremendous influence of calcination process on the phase structure and catalytic activity of precipitation-processed MnO2. Journal of Physics: Conference Series 1351, 012038. https://doi.org/10.1088/1742-6596/1351/1/012038.
    [25]
    Lekshmi, K.V., Yesodharan, S., Yesodharan, E., 2018. MnO2 efficiently removes indigo carmine dyes from polluted water. Heliyon 4(11), e00897. https://doi.org/10.1016/j.heliyon.2018.e00897.
    [26]
    Li, H., Gao, Q., Han, B., Ren, Z., Xia, K., Zhou, C., 2017. Partial-redox-promoted Mn cycling of Mn(II)-doped heterogeneous catalyst for efficient H2O2-mediated oxidation. ACS Applied Materials & Interfaces 9(1), 371-380. https://doi.org/10.1021/acsami.6b12445.
    [27]
    Li, X., Yi, L., Zhu, Q., Zhao, L., Xu, Y., Liu, M., Liu, T., Wu, Q., 2019. Synthesis of coal fly ash supported MnO2 for the enhanced degradation of Acid Red 73 in the presence of peroxymonosulfate. Environmental Technology 42(1), 81-92. https://doi.org/10.1080/09593330.2019.1620868.
    [28]
    Liu, T., Wang, W., Lu, X., Fan, J., Cai, X., Gao, B., Miao, R., Wang, J., Lv, Y., 2017. Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: Adsorption, active species, and pathways. RSC Advances 7(20), 12292-12300. https://doi.org/10.1039/C7RA00199A.
    [29]
    Liu, Y., Qu, R., Li, X., Wei, Y., Feng, L., 2020. A bifunctional β-MnO2 mesh for expeditious and ambient degradation of dyes in activation of peroxymonosulfate (PMS) and simultaneous oil removal from water. Journal of Colloid and Interface Science 579, 412-424. https://doi.org/10.1016/j.jcis.2020.06.073.
    [30]
    Luo, X., Liang, H., Qu, F., Ding, A., Cheng, X., Tang, C.Y., Li, G., 2018. Free-standing hierarchical α-MnO2@CuO membrane for catalytic filtration degradation of organic pollutants. Chemosphere 200, 237-247. https://doi.org/10.1016/j.chemosphere.2018.02.113.
    [31]
    Ma, M., Yang, Y., Chen, Y., Wu, F., Li, W., Lyu, P., Ma, Y., Tan, W., Huang, W., 2019. Synthesis of hollow flower-like Fe3O4/MnO2/Mn3O4 magnetically separable microspheres with valence heterostructure for dye degradation. Catalysts 9(7), 589. https://doi.org/10.3390/catal9070589.
    [32]
    Ma, S., Lee, S., Kim, K., Im, J., Jeon, H., 2021. Purification of organic pollutants in cationic thiazine and azo dye solutions using plasma-based advanced oxidation process via submerged multi-hole dielectric barrier discharge. Separation and Purification Technology 255, 117715. https://doi.org/10.1016/j.seppur.2020.117715.
    [33]
    Meng, X., Li, Z., Zeng, H., Chen, J., Zhang, Z., 2017. MoS2 quantum dots-interspersed Bi2WO6 heterostructures for visible light-induced detoxification and disinfection. Applied Catalysis B: Environmental 210, 160-172. https://doi.org/10.1016/j.apcatb.2017.02.083.
    [34]
    Mensah, K., Shokry, H., Elkady, M., Hawash, H.B., Samy, M., 2024. Enhanced photocatalytic degradation of dyes using a novel waste toner-based TiO2/Fe2O3@nanographite nanohybrid: A sustainable approach. Water Sci. Eng. 17(3), 226-235. https://doi.org/10.1016/j.wse.2024.01.005.
    [35]
    Mitran, G., Chen, S., Seo, D., 2020. Role of oxygen vacancies and Mn4+/Mn3+ ratio in oxidation and dry reforming over cobalt-manganese spinel oxides. Molecular Catalysis 483, 110704. https://doi.org/10.1016/j.mcat.2019.110704.
    [36]
    Moulai, F., Fellahi, O., Messaoudi, B., Hadjersi, T., Zerroual, L., 2018. Electrodeposition of nanostructured γ-MnO2 film for photodegradation of Rhodamine B. Ionics 24(7), 2099-2109. https://doi.org/10.1007/s11581-018-2440-7.
    [37]
    Nuengmatcha, P., Kuyyogsuy, A., Porrawatkul, P., Pimsen, R., Chanthai, S., Nuengmatcha, P., 2023. Efficient degradation of dye pollutants in wastewater via photocatalysis using a magnetic zinc oxide/graphene/iron oxide-based catalyst. Water Sci. Eng. 16(3), 243-251. https://doi.org/10.1016/j.wse.2023.01.004.
    [38]
    Ong, Y.P., Ho, L.N., Ong, S.A., Banjuraizah, J., Ibrahim, A.H., Thor, S.H., Yap, K.L., 2021. A highly sustainable hydrothermal synthesized MnO2 as cathodic catalyst in solar photocatalytic fuel cell. Chemosphere 263, 128212. https://doi.org/10.1016/j.chemosphere.2020.128212.
    [39]
    Pang, A.L., Arsad, A., Ahmadipour, M., Hamzah, A.A., Zaini, M.A.A., Mohsin, R., 2022. High efficient degradation of organic dyes by polypyrrole-multiwall carbon nanotubes nanocomposites. Polymers for Advanced Technologies 33(5), 1402-1411. https://doi.org/10.1002/pat.5609.
    [40]
    Panimalar, S., Chandrasekar, M., Logambal, S., Uthrakumar, R., Inmozhi, C., 2022a. Europium-doped MnO2 nanostructures for controlling optical properties and visible light photocatalytic activity. Materials Today: Proceedings 56, 3394-3401. https://doi.org/10.1016/j.matpr.2021.10.335.
    [41]
    Panimalar, S., Subash, M., Chandrasekar, M., Uthrakumar, R., Inmozhi, C., Al-Onazi, W.A., Al-Mohaimeed, A.M., Chen, T.W., Kennedy, J., Maaza, M., et al., 2022b. Reproducibility and long-term stability of Sn doped MnO2 nanostructures: Practical photocatalytic systems and wastewater treatment applications. Chemosphere 293, 133646. https://doi.org/10.1016/j.chemosphere.2022.133646.
    [42]
    Qamar, M.A., Shahid, S., Javed, M., Sher, M., Iqbal, S., Bahadur, Al., Li, D., 2021. Fabricated novel g-C3N4/Mn doped ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic pollutants from wastewater under sunlight radiations. Colloids and Surfaces A: Physicochemical and Engineering Aspects 611, 125863. https://doi.org/10.1016/j.colsurfa.2020.125863.
    [43]
    Qiao, Y., Meng, X., Zhang, Z., 2019. A new insight into the enhanced visible light-induced photocatalytic activity of NaNbO3/Bi2WO6 type-II heterostructure photocatalysts. Applied Surface Science 470, 645-657. https://doi.org/10.1016/j.apsusc.2018.11.04.
    [44]
    Santos, V., Pereira, M.F.R., Orfao, J.J.M., Figueiredo, J.J., 2010. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Applied Catalysis B: Environmental 99(1-2), 353-363. https://doi.org/10.1016/j.apcatb.2010.07.007.
    [45]
    Song, Y., Hormes, J., Kumar, C.S.S.R., 2008. Microfluidic synthesis of nanomaterials. Small 4(6), 698-711. https://doi.org/10.1002/smll.200701029.
    [46]
    Sun, H., Mei, L., Liang, J., Zhao, Z., Lee, C., Fei, H., Ding, M., Lau, J., Li, M., Wang, C., et al., 2017. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356(6338), 599-604. https://doi.org/10.1126/science.aam5852.
    [47]
    Taghavi, R., Rostamnia, S., Farajzadeh, M., Karimi-Maleh, H., Wang, J., Kim, D., Jang, H.W., Luque, R., Varma, R.S., Shokouhimehr, M., 2022. Magnetite metal-organic frameworks: Applications in environmental remediation of heavy metals, organic contaminants, and other pollutants. Inorganic Chemistry 61(40), 15747-15783. https://doi.org/10.1021/acs.inorgchem.2c01939.
    [48]
    Tju, H., Taufik, A., Saleh, R., 2021. Preparation of CeO2/TiO2/NGP composites as efficient catalyst for removal of organic dye using photo-, sono-, and sonophotocatalytic activity. Journal of Physics: Conference Series 1725, 012005. https://doi.org/10.1088/1742-6596/1725/1/012005.
    [49]
    Trang, T.N.Q., Phan, T.B., Nam, N.D., Thu, V.T.H., 2020. In situ charge transfer at the Ag@ZnO photoelectrochemical interface toward the high photocatalytic performance of H2 evolution and RhB degradation. ACS Applied Materials & Interfaces 12(10), 12195-12206. https://doi.org/10.1021/acsami.9b15578.
    [50]
    Wan, H., Ge, H., Zhang, L., Duan, T., 2019. CS@MnO2 core-shell nanospheres with enhanced visible light photocatalytic degradation. Materials Letters 237, 290-293. https://doi.org/10.1016/j.matlet.2018.11.088.
    [51]
    Xie, C., Lu, L., Xia, Y., Gang, R., Ye, Q., Koppala, S., 2022. Evaluation of visible photocatalytic performance of microwave hydrothermal synthesis of MnO2/TiO2 core-shell structures and gaseous mercury removal. Microporous and Mesoporous Materials 334, 11788. https://doi.org/10.1016/j.micromeso.2022.111788.
    [52]
    Yan, J., Khoo, E., Sumboja, A., Lee, P.S., 2010. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 4(7), 4247-4255. https://doi.org/10.1021/nn100592d.
    [53]
    Yu, X., Sun, J., Li, G., Huang, Y., Li, Y., Xia, D., Jiang, F., 2020. Integration of -based AOP mediated by reusable iron particles and a sulfidogenic process to degrade and detoxify Orange II. Water Research 174, 115622. https://doi.org/10.1016/j.watres.2020.115622.
    [54]
    Yu, Y., Liu, S., Ji, J., Huang, H., 2019. Amorphous MnO2 surviving calcination: An efficient catalyst for ozone decomposition. Catalysis Science & Technology 9(18), 5090-5099. https://doi.org/10.1039/C9CY01426H.
    [55]
    Zhang, L., Nakamura, H., Lee, C., Maeda, H., 2012. An investigation of heating rate effects on particle size and concentration: Instruction for scale-up. RSC Advances 2(9), 3708-3713. https://doi.org/10.1039/C2RA01232D.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (2) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return