Citation: | Sin Ling Chiam, Swee-Yong Pung, Chee Meng Koe, Fei Yee Yeoh. 2025: Immobilization of MnO2 nanoflowers on coils using direct heating method for organic pollutant remediation. Water Science and Engineering, 18(2): 165-176. doi: 10.1016/j.wse.2024.09.001 |
[1] |
Ardani, M.R., Pang, A.L., Pal, U., Zheng, R., Arsad, A., Hamzah, A.A., Ahmadipour, M., 2022. Ultrasonic-assisted polyaniline-multiwall carbon nanotube photocatalyst for efficient photodegradation of organic pollutants. Journal of Water Process Engineering 46, 102557. https://doi.org/10.1016/j.jwpe.2021.102557.
|
[2] |
Bakhtiarzadeh, Z., Rouhani, S., Karimi, Z., Rostamnia, S., Msagati, T.A.M., Kim, D., Jang, H.W., Ramakrishan, S., Varma, R.S., Shokouhimehr, M., 2021. Hydrothermal self-sacrificing growth of polymorphous MnO2 on magnetic porous-carbon (Fe3O4@Cg/MnO2): A sustainable nanostructured catalyst for activation of molecular oxygen. Molecular Catalysis 509, 111603. https://doi.org/10.1016/j.mcat.2021.111603.
|
[3] |
Barreca, D., Gri, F., Gasparotto, A., Carraro, G., Bigiani, L., Altantzis, T., Zener, B., Stangar, U., Alessi, B., Padmanaban, D.B., et al., 2019. Multi-functional MnO2 nanomaterials for photo-activated applications by a plasma-assisted fabrication route. Nanoscale 11(1), 98-108. https://doi.org/10.1039/C8NR06468G.
|
[4] |
Beura, R., Pachaiappan, P., Paramasivam, T., 2021. Photocatalytic degradation studies of organic dyes over novel Ag-loaded ZnO-graphene hybrid nanocomposites. Journal of Physics and Chemistry of Solids, 148, 109689. https://doi.org/10.1016/j.jpcs.2020.109689.
|
[5] |
Celebi, N., Aydin, M.Y., Soysal, F., Ciftci, Y.O., Salimi, K., 2021. Ligand-free fabrication of Au/TiO2 nanostructures for plasmonic hot-electron-driven photocatalysis: Photoelectrochemical water splitting and organic-dye degredation. Journal of Alloys and Compounds 860, 157908. https://doi.org/10.1016/j.jallcom.2020.157908.
|
[6] |
Chan, Y.L., Pung, S.Y., Sreekantan, S., Yeoh, F.Y., 2016. Photocatalytic activity of β-MnO2 nanotubes grown on PET fibre under visible light irradiation. Journal of Experimental Nanoscience 11(8), 603-618. https://doi.org/10.1080/17458080.2015.1102342.
|
[7] |
Chiam, S.L., Pung, S.Y., Yeoh, F.Y., 2020. Recent developments in MnO2-based photocatalysts for organic dye removal: A review. Environmental Science and Pollution Research 27(6), 5759-5778. https://doi.org/10.1007/s11356-019-07568-8.
|
[8] |
Chiam, S.L., Pung, S.Y., Yeoh, F.Y., Ahmadipour, M., 2022. Highly efficient oxidative degradation of organic dyes by manganese dioxide nanoflowers. Materials Chemistry and Physics 280, 125848. https://doi.org/10.1016/j.matchemphys.2022.125848.
|
[9] |
Dhokpande, S.R., Deshmukh, S.M., Khandekar, A., Sankhe, A., 2024. A review outlook on methods for removal of heavy metal ions from wastewater. Separation and Purification Technology 350, 127868. https://doi.org/10.1016/j.seppur.2024.127868.
|
[10] |
Dolatyari, L., Shateri, M., Yaftian, M.R., Rostamnia, S., 2019. Unmodified SBA-15 adsorbents for the removal and separation of Th(IV) and U(VI) ions: The role of pore channels and surface-active sites. Separation Science and Technology 54(17), 2863-2878. https://doi.org/10.1080/01496395.2018.1556297.
|
[11] |
Dong, C., Liu, Z., Liu, J., Wang, W., Cui, L., Luo, R., Guo, H., Zheng, X., Qiao, S., Du, X., et al., 2017. Modest oxygen-defective amorphous manganese-based nanoparticle mullite with superior overall electrocatalytic performance for oxygen reduction reaction. Small 13(16), 1603903. https://doi.org/10.1002/smll.201603903.
|
[12] |
Ebrahimi, A., Jafari, N., Ebrabimpour, K., Karimi, M., Rostamnia, S., Behnami, A., Ghanbari, R., Mohammadi, A., Rahimi, B., Abdolahnejad, A., 2021. A novel ternary heterogeneous TiO2/BiVO4/NaY-zeolite nanocomposite for photocatalytic degradation of microcystin-leucine arginine (MC-LR) under visible light. Ecotoxicology and Environmental Safety 210, 111862. https://doi.org/10.1016/j.ecoenv.2020.111862.
|
[13] |
Elbasuney, S., Elsayed, M.A., Mostafa, S.F., Khalil, W.F., 2019. MnO2 nanoparticles supported on porous Al2O3 substrate for wastewater treatment: Synergy of adsorption, oxidation, and photocatalysis. Journal of Inorganic and Organometallic Polymers and Materials 29, 827-840. https://doi.org/10.1007/s10904-018-01057-0.
|
[14] |
Eshghi, F., Mehrabadi, Z., Farsadrooh, M., Hayati, P., Javadian, H., Karimi, M., Karimi-Maleh, H., Rostamnia, S., Karaman, C., Aghabahaei, F., 2023. Photocatalytic degradation of remdesivir nucleotide pro-drug using [Cu(1-methylimidazole)4 (SCN)2] nanocomplex synthesized by sonochemical process: Theoretical, hirshfeld surface analysis, degradation kinetic, and thermodynamic studies. Environmental Research 222, 115321. https://doi.org/10.1016/j.envres.2023.115321.
|
[15] |
Gagrani, A., Zhou, J., Tsuzuki, T., 2018. Solvent free mechanochemical synthesis of MnO2 for the efficient degradation of Rhodamine-B. Ceramics International 44(5), 4694-4698. https://doi.org/10.1016/j.ceramint.2017.12.050.
|
[16] |
Ge, Y., Luo, H., Huang, J., Zhang, Z., 2021. Visible-light-active TiO2 photocatalyst for efficient photodegradation of organic dyes. Optical Materials 115, 111058. https://doi.org/10.1016/j.optmat.2021.111058.
|
[17] |
Gong, W., Meng, X., Tang, X., Ji., P., 2017. Core-shell MnO2-SiO2 nanorods for catalyzing the removal of dyes from water. Catalysts 7(1), 19. https://doi.org/10.3390/catal70100194.
|
[18] |
Hayati, P., Mehrabadi, Z., Karimi, M., Janczak, J., Mohammadi, K., Mahmoudi, G., Dadi, F., Fard, M.J.S., Hasanzadeh, A., Rostamnia, S., 2021. Photocatalytic activity of new nanostructures of an Ag(I) metal-organic framework (Ag-MOF) for the efficient degradation of MCPA and 2,4-D herbicides under sunlight irradiation. New Journal of Chemistry 45(7), 3408-3417. https://doi.org/10.1039/D0NJ02460K.
|
[19] |
Hoseinpour, V., Souri, M., Ghaemi, N., 2018. Green synthesis, characterisation, and photocatalytic activity of manganese dioxide nanoparticles. Micro & Nano Letters 13(11), 1560-1563. https://doi.org/10.1049/mnl.2018.5008.
|
[20] |
Huang, C., Wang, Y., Gong, M., Wang, W., Mu, Y., Hu, Z., 2020. α-MnO2/palygorskite composite as an effective catalyst for heterogeneous activation of peroxymonosulfate (PMS) for the degradation of Rhodamine B. Separation and Purification Technology 230, 115877. https://doi.org/10.1016/j.seppur.2019.115877.
|
[21] |
Huang, Y., Tian, X., Nie, Y., Yang, C., Wang, Y., 2018. Enhanced peroxymonosulfate activation for phenol degradation over MnO2 at pH 3.5-9.0 via Cu(II) substitution. Journal of Hazardous Materials 360, 303-310. https://doi.org/10.1016/j.jhazmat.2018.08.028.
|
[22] |
Hutagalung, S., Muchlis, I., Khotimah, K., 2020. Textile wastewater treatment using advanced oxidation process (AOP). IOP Conference Series: Materials Science and Engineering 722, 012032. https://doi.org/10.1088/1757-899X/722/1/012032.
|
[23] |
Iqbal, M.S., Aslam, A.A., Iftikhar, R., Junaid, M., Imran, S.M., Nazir, M.S., Ali, Z., Zafar, M., Kanwal, A., Othman, N.K., et al., 2023. The potential of functionalized graphene-based composites for removing heavy metals and organic pollutants. Journal of Water Process Engineering 53, 103809. https://doi.org/10.1016/j.jwpe.2023.103809.
|
[24] |
Kurniati, S., Kurniati, S., Linggawati, A., Siregar, S.S., Awaluddin, A., 2019. The tremendous influence of calcination process on the phase structure and catalytic activity of precipitation-processed MnO2. Journal of Physics: Conference Series 1351, 012038. https://doi.org/10.1088/1742-6596/1351/1/012038.
|
[25] |
Lekshmi, K.V., Yesodharan, S., Yesodharan, E., 2018. MnO2 efficiently removes indigo carmine dyes from polluted water. Heliyon 4(11), e00897. https://doi.org/10.1016/j.heliyon.2018.e00897.
|
[26] |
Li, H., Gao, Q., Han, B., Ren, Z., Xia, K., Zhou, C., 2017. Partial-redox-promoted Mn cycling of Mn(II)-doped heterogeneous catalyst for efficient H2O2-mediated oxidation. ACS Applied Materials & Interfaces 9(1), 371-380. https://doi.org/10.1021/acsami.6b12445.
|
[27] |
Li, X., Yi, L., Zhu, Q., Zhao, L., Xu, Y., Liu, M., Liu, T., Wu, Q., 2019. Synthesis of coal fly ash supported MnO2 for the enhanced degradation of Acid Red 73 in the presence of peroxymonosulfate. Environmental Technology 42(1), 81-92. https://doi.org/10.1080/09593330.2019.1620868.
|
[28] |
Liu, T., Wang, W., Lu, X., Fan, J., Cai, X., Gao, B., Miao, R., Wang, J., Lv, Y., 2017. Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: Adsorption, active species, and pathways. RSC Advances 7(20), 12292-12300. https://doi.org/10.1039/C7RA00199A.
|
[29] |
Liu, Y., Qu, R., Li, X., Wei, Y., Feng, L., 2020. A bifunctional β-MnO2 mesh for expeditious and ambient degradation of dyes in activation of peroxymonosulfate (PMS) and simultaneous oil removal from water. Journal of Colloid and Interface Science 579, 412-424. https://doi.org/10.1016/j.jcis.2020.06.073.
|
[30] |
Luo, X., Liang, H., Qu, F., Ding, A., Cheng, X., Tang, C.Y., Li, G., 2018. Free-standing hierarchical α-MnO2@CuO membrane for catalytic filtration degradation of organic pollutants. Chemosphere 200, 237-247. https://doi.org/10.1016/j.chemosphere.2018.02.113.
|
[31] |
Ma, M., Yang, Y., Chen, Y., Wu, F., Li, W., Lyu, P., Ma, Y., Tan, W., Huang, W., 2019. Synthesis of hollow flower-like Fe3O4/MnO2/Mn3O4 magnetically separable microspheres with valence heterostructure for dye degradation. Catalysts 9(7), 589. https://doi.org/10.3390/catal9070589.
|
[32] |
Ma, S., Lee, S., Kim, K., Im, J., Jeon, H., 2021. Purification of organic pollutants in cationic thiazine and azo dye solutions using plasma-based advanced oxidation process via submerged multi-hole dielectric barrier discharge. Separation and Purification Technology 255, 117715. https://doi.org/10.1016/j.seppur.2020.117715.
|
[33] |
Meng, X., Li, Z., Zeng, H., Chen, J., Zhang, Z., 2017. MoS2 quantum dots-interspersed Bi2WO6 heterostructures for visible light-induced detoxification and disinfection. Applied Catalysis B: Environmental 210, 160-172. https://doi.org/10.1016/j.apcatb.2017.02.083.
|
[34] |
Mensah, K., Shokry, H., Elkady, M., Hawash, H.B., Samy, M., 2024. Enhanced photocatalytic degradation of dyes using a novel waste toner-based TiO2/Fe2O3@nanographite nanohybrid: A sustainable approach. Water Sci. Eng. 17(3), 226-235. https://doi.org/10.1016/j.wse.2024.01.005.
|
[35] |
Mitran, G., Chen, S., Seo, D., 2020. Role of oxygen vacancies and Mn4+/Mn3+ ratio in oxidation and dry reforming over cobalt-manganese spinel oxides. Molecular Catalysis 483, 110704. https://doi.org/10.1016/j.mcat.2019.110704.
|
[36] |
Moulai, F., Fellahi, O., Messaoudi, B., Hadjersi, T., Zerroual, L., 2018. Electrodeposition of nanostructured γ-MnO2 film for photodegradation of Rhodamine B. Ionics 24(7), 2099-2109. https://doi.org/10.1007/s11581-018-2440-7.
|
[37] |
Nuengmatcha, P., Kuyyogsuy, A., Porrawatkul, P., Pimsen, R., Chanthai, S., Nuengmatcha, P., 2023. Efficient degradation of dye pollutants in wastewater via photocatalysis using a magnetic zinc oxide/graphene/iron oxide-based catalyst. Water Sci. Eng. 16(3), 243-251. https://doi.org/10.1016/j.wse.2023.01.004.
|
[38] |
Ong, Y.P., Ho, L.N., Ong, S.A., Banjuraizah, J., Ibrahim, A.H., Thor, S.H., Yap, K.L., 2021. A highly sustainable hydrothermal synthesized MnO2 as cathodic catalyst in solar photocatalytic fuel cell. Chemosphere 263, 128212. https://doi.org/10.1016/j.chemosphere.2020.128212.
|
[39] |
Pang, A.L., Arsad, A., Ahmadipour, M., Hamzah, A.A., Zaini, M.A.A., Mohsin, R., 2022. High efficient degradation of organic dyes by polypyrrole-multiwall carbon nanotubes nanocomposites. Polymers for Advanced Technologies 33(5), 1402-1411. https://doi.org/10.1002/pat.5609.
|
[40] |
Panimalar, S., Chandrasekar, M., Logambal, S., Uthrakumar, R., Inmozhi, C., 2022a. Europium-doped MnO2 nanostructures for controlling optical properties and visible light photocatalytic activity. Materials Today: Proceedings 56, 3394-3401. https://doi.org/10.1016/j.matpr.2021.10.335.
|
[41] |
Panimalar, S., Subash, M., Chandrasekar, M., Uthrakumar, R., Inmozhi, C., Al-Onazi, W.A., Al-Mohaimeed, A.M., Chen, T.W., Kennedy, J., Maaza, M., et al., 2022b. Reproducibility and long-term stability of Sn doped MnO2 nanostructures: Practical photocatalytic systems and wastewater treatment applications. Chemosphere 293, 133646. https://doi.org/10.1016/j.chemosphere.2022.133646.
|
[42] |
Qamar, M.A., Shahid, S., Javed, M., Sher, M., Iqbal, S., Bahadur, Al., Li, D., 2021. Fabricated novel g-C3N4/Mn doped ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic pollutants from wastewater under sunlight radiations. Colloids and Surfaces A: Physicochemical and Engineering Aspects 611, 125863. https://doi.org/10.1016/j.colsurfa.2020.125863.
|
[43] |
Qiao, Y., Meng, X., Zhang, Z., 2019. A new insight into the enhanced visible light-induced photocatalytic activity of NaNbO3/Bi2WO6 type-II heterostructure photocatalysts. Applied Surface Science 470, 645-657. https://doi.org/10.1016/j.apsusc.2018.11.04.
|
[44] |
Santos, V., Pereira, M.F.R., Orfao, J.J.M., Figueiredo, J.J., 2010. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Applied Catalysis B: Environmental 99(1-2), 353-363. https://doi.org/10.1016/j.apcatb.2010.07.007.
|
[45] |
Song, Y., Hormes, J., Kumar, C.S.S.R., 2008. Microfluidic synthesis of nanomaterials. Small 4(6), 698-711. https://doi.org/10.1002/smll.200701029.
|
[46] |
Sun, H., Mei, L., Liang, J., Zhao, Z., Lee, C., Fei, H., Ding, M., Lau, J., Li, M., Wang, C., et al., 2017. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356(6338), 599-604. https://doi.org/10.1126/science.aam5852.
|
[47] |
Taghavi, R., Rostamnia, S., Farajzadeh, M., Karimi-Maleh, H., Wang, J., Kim, D., Jang, H.W., Luque, R., Varma, R.S., Shokouhimehr, M., 2022. Magnetite metal-organic frameworks: Applications in environmental remediation of heavy metals, organic contaminants, and other pollutants. Inorganic Chemistry 61(40), 15747-15783. https://doi.org/10.1021/acs.inorgchem.2c01939.
|
[48] |
Tju, H., Taufik, A., Saleh, R., 2021. Preparation of CeO2/TiO2/NGP composites as efficient catalyst for removal of organic dye using photo-, sono-, and sonophotocatalytic activity. Journal of Physics: Conference Series 1725, 012005. https://doi.org/10.1088/1742-6596/1725/1/012005.
|
[49] |
Trang, T.N.Q., Phan, T.B., Nam, N.D., Thu, V.T.H., 2020. In situ charge transfer at the Ag@ZnO photoelectrochemical interface toward the high photocatalytic performance of H2 evolution and RhB degradation. ACS Applied Materials & Interfaces 12(10), 12195-12206. https://doi.org/10.1021/acsami.9b15578.
|
[50] |
Wan, H., Ge, H., Zhang, L., Duan, T., 2019. CS@MnO2 core-shell nanospheres with enhanced visible light photocatalytic degradation. Materials Letters 237, 290-293. https://doi.org/10.1016/j.matlet.2018.11.088.
|
[51] |
Xie, C., Lu, L., Xia, Y., Gang, R., Ye, Q., Koppala, S., 2022. Evaluation of visible photocatalytic performance of microwave hydrothermal synthesis of MnO2/TiO2 core-shell structures and gaseous mercury removal. Microporous and Mesoporous Materials 334, 11788. https://doi.org/10.1016/j.micromeso.2022.111788.
|
[52] |
Yan, J., Khoo, E., Sumboja, A., Lee, P.S., 2010. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 4(7), 4247-4255. https://doi.org/10.1021/nn100592d.
|
[53] |
Yu, X., Sun, J., Li, G., Huang, Y., Li, Y., Xia, D., Jiang, F., 2020. Integration of -based AOP mediated by reusable iron particles and a sulfidogenic process to degrade and detoxify Orange II. Water Research 174, 115622. https://doi.org/10.1016/j.watres.2020.115622.
|
[54] |
Yu, Y., Liu, S., Ji, J., Huang, H., 2019. Amorphous MnO2 surviving calcination: An efficient catalyst for ozone decomposition. Catalysis Science & Technology 9(18), 5090-5099. https://doi.org/10.1039/C9CY01426H.
|
[55] |
Zhang, L., Nakamura, H., Lee, C., Maeda, H., 2012. An investigation of heating rate effects on particle size and concentration: Instruction for scale-up. RSC Advances 2(9), 3708-3713. https://doi.org/10.1039/C2RA01232D.
|