Citation: | Van-Truc Nguyen, Nguyen Duy Dat, Thi-Giang-Huong Duong, Viet-Cuong Dinh, Thi-Dieu-Hien Vo. 2025: Degradation of tetracycline in water using hydrogen peroxide activated by soybean residue-derived magnetic biochar. Water Science and Engineering, 18(2): 129-140. doi: 10.1016/j.wse.2024.10.001 |
[1] |
Akindolie, M.S., Choi, H.J., 2022. Surface modification of spent coffee grounds using phosphoric acid for enhancement of methylene blue adsorption from aqueous solution. Water Sci. Technol. 85(4), 1218-1234. https://doi.org/10.2166/wst.2022.021.
|
[2] |
Amarzadeh, M., Azqandi, M., Nateq, K., Ramavandi, B., Khan, N.A., Nasseh, N., 2023. Heterogeneous Fenton-like photocatalytic process towards the eradication of tetracycline under UV irradiation: Mechanism elucidation and environmental risk analysis. Water 15(3), 2336. https://doi.org/10.3390/w15132336.
|
[3] |
Azqandi, M., Nateq, K., Amarzadeh, M., Yoosefian, M., Yaghoot-Nezhad, A., Ahmad, A., Ramavandi, B., Nasseh, N., 2024. Intensified photo-decontamination of tetracycline antibiotic by S-scheme spinel manganese ferrite-grafted ZIF-8 heterojunction photocatalyst: Mechanism conception, degradation pathway and DFT studies. Journal of Environmental Chemical Engineering 12(3), 112875. https://doi.org/10.1016/j.jece.2024.112875.
|
[4] |
Bagheri, A., Abu-Danso, E., Iqbal, J., Bhatnagar, A., 2020. Modified biochar from Moringa seed powder for the removal of diclofenac from aqueous solution. Environmental Science and Pollution Research 27(7), 7318-7327. https://doi.org/10.1007/s11356-019-06844-x.
|
[5] |
Baird, R., Rice, E., Eaton, A., 2017. Standard Methods for the Examination of Water and Wastewaters. American Water Works Association, Denver.
|
[6] |
Barikbin, B., Arghavan, F.S., Othmani, A., Panahi, A.H., Nasseh, N., 2020. Degradation of tetracycline in Fenton and heterogeneous Fenton like processes by using FeNi3 and FeNi3/SiO2 catalysts. Desalin. Water Treat. 200, 262-274. https://doi.org/10.5004/dwt.2020.26061.
|
[7] |
Bokare, A.D., Choi, W., 2014. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 275, 121-135. https://doi.org/10.1016/j.jhazmat.2014.04.054.
|
[8] |
Borba, L.L., Cuba, R.M.F., Teran, F.J.C., Castro, M.N., Mendes, T.A., 2019. Use of adsorbent biochar from pequi (Caryocar brasiliense) husks for the removal of commercial formulation of glyphosate from aqueous media. Brazilian Archives of Biology and Technology 62(10), e19180450. https://doi.org/10.1590/1678-4324-2019180450.
|
[9] |
Cao, Y., Cui, K., Chen, Y., Cui, M., Li, G., Li, D., Yang, X., 2021. Efficient degradation of tetracycline by H2O2 catalyzed by FeOCl: A wide range of pH values from 3 to 7. Solid State Sci. 113, 106548. https://doi.org/10.1016/j.solidstatesciences.2021.106548.
|
[10] |
Chen, L., Mi, B., He, J., Li, Y., Zhou, Z., Wu, F., 2023. Functionalized biochars with highly-efficient malachite green adsorption property produced from banana peels via microwave-assisted pyrolysis. Bioresour. Technol. 376, 128840. https://doi.org/10.1016/j.biortech.2023.128840.
|
[11] |
Cheng, X., Liang, L., Ye, J., Li, N., Yan, B., Chen, G., 2023a. Influence and mechanism of water matrices on H2O2-based Fenton-like oxidation processes: A review. Sci. Total Environ. 888, 164086. https://doi.org/10.1016/j.scitotenv.2023.164086.
|
[12] |
Cheng, Y., Deng, L., Wang, D., Wang, X., Ji, C., Zhou, Y.H., 2023b. CuS@ Cu-CD composites as efficient heterogeneous Fenton-like catalysts for the photodegradation of tetracycline. Adv. Environ. Sci. 2(3), 495-507. https://doi.org/10.1039/d2va00139j.
|
[13] |
Cho, D.W., Yoon, K., Kwon, E.E., Biswas, J.K., Song, H., 2017. Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl3-pretreated spent coffee ground. Environ. Pollut. 229, 942-949. https://doi.org/10.1016/j.envpol.2017.07.079.
|
[14] |
Devi, P., Saroha, A.K., 2017. Utilization of sludge based adsorbents for the removal of various pollutants: A review. Sci. Total Environ. 578, 16-33. https://doi.org/10.1016/j.scitotenv.2016.10.220.
|
[15] |
Du, L., Ahmad, S., Liu, L., Wang, L., Tang, J., 2023. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water. Sci. Total Environ. 858, 159815. https://doi.org/10.1016/j.scitotenv.2022.159815.
|
[16] |
Foroutan, R., Jamaleddin Peighambardoust, S., Amarzadeh, M., Kiani Korri, A., Sadat Peighambardoust, N., Ahmad, A., Ramavandi, B., 2022. Nickel ions abatement from aqueous solutions and shipbuilding industry wastewater using ZIF-8-chicken beak hydroxyapatite. Journal of Molecular Liquids 356, 119003. https://doi.org/10.1016/j.molliq.2022.119003.
|
[17] |
Fu, M.M., Mo, C.H., Li, H., Zhang, Y.N., Huang, W.X., Wong, M.H., 2019. Comparison of physicochemical properties of biochars and hydrochars produced from food wastes. Journal of Cleaner Production 236, 117637. https://doi.org/10.1016/j.jclepro.2019.117637.
|
[18] |
Ganesapillai, M., Mehta, R., Tiwari, A., Sinha, A., Bakshi, H.S., Chellappa, V., Drewnowski, J., 2023. Waste to energy: A review of biochar production with emphasis on mathematical modelling and its applications. Heliyon 9(4), e14873. https://doi.org/10.1016/j.heliyon.2023.e14873.
|
[19] |
Ghanbari, F., Riahi, M., Kakavandi, B., Hong, X., Lin, K.Y.A., 2020. Intensified peroxydisulfate/microparticles-zero valent iron process through aeration for degradation of organic pollutants: Kinetic studies, mechanism and effect of anions. Journal of Water Process Engineering 36, 101321. https://doi.org/10.1016/j.jwpe.2020.101321.
|
[20] |
Hou, L., Wang, L., Royer, S., Zhang, H., 2016. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. J. Hazard. Mater. 302, 458-467. https://doi.org/10.1016/j.jhazmat.2015.09.033.
|
[21] |
Hu, T., Zhao, S., Huang, Y., Chen, Z., Zhang, X., Wei, C., Zeng, S., Liu, L., 2023. Potential removals of tetracycline and sulfamethoxazole by iron-loaded sludge biochar. J. Water Process. Eng. 54, 103962. https://doi.org/10.1016/j.jwpe.2023.103962.
|
[22] |
Huang, X., Zhou, H., Yue, X., Ran, S., Zhu, J., 2021. Novel magnetic Fe3O4/α-FeOOH nanocomposites and their enhanced mechanism for tetracycline hydrochloride removal in the visible photo-Fenton process. ACS Omega 6(13), 9095-9103. https://doi.org/10.1021/acsomega.1c00204.
|
[23] |
Huang, Z., Fang, X., Wang, S., Zhou, N., Fan, S., 2023. Effects of KMnO4 pre- and post-treatments on biochar properties and its adsorption of tetracycline. J. Mol. Liq. 373, 121257. https://doi.org/10.1016/j.molliq.2023.121257.
|
[24] |
Isaac, R., Siddiqui, S., Aldosari, O.F., Kashif Uddin, M., 2023. Magnetic biochar derived from Juglans regia for the adsorption of Cu2+ and Ni2+: Characterization, modelling, optimization, and cost analysis. J. Saudi Chem. Soc. 27(6), 101749. https://doi.org/10.1016/j.jscs.2023.101749.
|
[25] |
Jaiswal, A., Banerjee, S., Mani, R., Chattopadhyaya, M.C., 2013. Synthesis, characterization and application of goethite mineral as an adsorbent. J. Environ. Chem. Eng. 1(3), 281-289. https://doi.org/10.1016/j.jece.2013.05.007.
|
[26] |
Jaiswal, K.K., Kumar, V., Vlaskin, M.S., Nanda, M., Verma, M., Ahmad, W., Kim, H., 2021. Hydropyrolysis of freshwater macroalgal bloom for bio-oil and biochar production: Kinetics and isotherm for removal of multiple heavy metals. Environ. Technol. Innov. 22, 101440. https://doi.org/10.1016/j.eti.2021.101440.
|
[27] |
Jang, H.M., Kan, E., 2019. A novel hay-derived biochar for removal of tetracyclines in water. Bioresource Technology 274, 162-172. https://doi.org/10.1016/j.biortech.2018.11.081.
|
[28] |
Jiang, H., Dai, Y., 2023. Vitamin C modified crayfish shells biochar efficiently remove tetracycline from water: A good medicine for water restoration. Chemosphere 311, 136884. https://doi.org/10.1016/j.chemosphere.2022.136884.
|
[29] |
Jiang, W., Cai, Y., Liu, D., Shi, Q., Wang, Q., 2023. Adsorption properties and mechanism of suaeda biochar and modified materials for tetracycline. Environ. Res. 235, 116549. https://doi.org/10.1016/j.envres.2023.116549.
|
[30] |
Jiao, Y., Han, D., Lu, Y., Rong, Y., Fang, L., Liu, Y., Han, R., 2017. Characterization of pine-sawdust pyrolytic char activated by phosphoric acid through microwave irradiation and adsorption property toward CDNB in batch mode. Desalination and Water Treatment 77, 247-255. https://doi.org/10.5004/dwt.2017.20780.
|
[31] |
Jing, S., Zhao, J., Wang, A., Ji, Q., Cheng, R., Liang, H., Chen, F., Kannan, P., Brouzgou, A., Tsiakaras, P., 2024. Efficient photocatalytic production of H2O2 and photodegradation of tetracycline by CdS/square tubular g-C3N4 S-scheme heterojunction photocatalyst. Chemical Engineering Journal 479, 147150. https://doi.org/10.1016/j.cej.2023.147150.
|
[32] |
Kakavandi, B., Babaei, A.A., 2016. Heterogeneous Fenton-like oxidation of petrochemical wastewater using a magnetically separable catalyst (MNPs@C): Process optimization, reaction kinetics and degradation mechanisms. RSC Advances 6(88), 84999-85011. https://doi.org/10.1039/C6RA17624K.
|
[33] |
Kubilay, S., Gurkan, R., Savran, A., Sahan, T., 2007. Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption 13(1), 41-51. https://doi.org/10.1007/s10450-007-9003-y.
|
[34] |
Kurniawan, T.A., Othman, M.H.D., Liang, X., Goh, H.H., Gikas, P., Chong, K.K., Chew, K.W., 2023. Challenges and opportunities for biochar to promote circular economy and carbon neutrality. J. Environ. Manage. 332, 117429. https://doi.org/10.1016/j.jenvman.2023.117429.
|
[35] |
Lee, Y.J., Lee, J.M., Huang, M., Park, S.J., Lee, C.G., 2023. Degradation of imidacloprid via the activation of peroxymonosulfate and peroxydisulfate using a Fenton-sludge-derived Fe0/Fe3C composite. J. Water Process. Eng. 56, 104347. https://doi.org/10.1016/j.jwpe.2023.104347.
|
[36] |
Li, D., Yu, J., Jia, J., He, H., Shi, W., Zheng, T., Ma, J., 2022a. Coupling electrode aeration and hydroxylamine for the enhanced electro-Fenton degradation of organic contaminant: Improving H2O2 generation, Fe3+/Fe2+ cycle and N2 selectivity. Water Res. 214, 118167. https://doi.org/10.1016/j.watres.2022.118167.
|
[37] |
Li, J., Liu, Y., Ren, X., Dong, W., Chen, H., Cai, T., Zeng, W., Li, W., Tang, L., 2021. Soybean residue based biochar prepared by ball milling assisted alkali activation to activate peroxydisulfate for the degradation of tetracycline. J. Colloid Interface Sci. 599, 631-641. https://doi.org/10.1016/j.jcis.2021.04.074.
|
[38] |
Li, S., Han, K., Li, J., Li, M., Lu, C., 2017. Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Micropor. Mesopor. Mat. 243, 291-300. https://doi.org/10.1016/j.micromeso.2017.02.052.
|
[39] |
Li, X., Cui, K., Guo, Z., Yang, T., Cao, Y., Xiang, Y., Chen, H., Xi, M., 2020. Heterogeneous Fenton-like degradation of tetracyclines using porous magnetic chitosan microspheres as an efficient catalyst compared with two preparation methods. Chem. Eng. J. 379, 122324. https://doi.org/10.1016/j.cej.2019.122324.
|
[40] |
Li, X., Jia, Y., Zhang, J., Qin, Y., Wu, Y., Zhou, M., Sun, J., 2022b. Efficient removal of tetracycline by H2O2 activated with iron-doped biochar: Performance, mechanism, and degradation pathways. Chin. Chem. Lett. 33(4), 2105-2110. https://doi.org/10.1016/j.cclet.2021.08.054.
|
[41] |
Li, Y., Gupta, R., Zhang, Q., You, S., 2023. Review of biochar production via crop residue pyrolysis: Development and perspectives. Bioresour. Technol. 369, 128423. https://doi.org/10.1016/j.biortech.2022.128423.
|
[42] |
Liou, M.J., Lu, M.C., 2008. Catalytic degradation of explosives with goethite and hydrogen peroxide. J. Hazard. Mater. 151(2), 540-546. https://doi.org/10.1016/j.jhazmat.2007.06.016.
|
[43] |
Liu, J., Li, X., Chu, Y., Yuan, L., Lv, R., Zhang, W., 2023. An autocatalytic Fe(III)/H2O2 Fenton-like process triggered by tetracycline: The overlooked effect of quinone intermediates. Chem. Eng. J. 475, 146035. https://doi.org/10.1016/j.cej.2023.146035.
|
[44] |
Liu, P., Li, H., Liu, X., Wan, Y., Han, X., Zou, W., 2020. Preparation of magnetic biochar obtained from one-step pyrolysis of Salix mongolica and investigation into adsorption behavior of sulfadimidine sodium and norfloxacin in aqueous solution. J. Dispers. Sci. Technol. 41(2), 214-226. https://doi.org/10.1080/01932691.2018.1562354.
|
[45] |
Liu, Q., Zheng, Y., Zhong, L., Cheng, X., 2015. Removal of tetracycline from aqueous solution by a Fe3O4 incorporated PAN electrospun nanofiber mat. Journal of Environmental Sciences 28, 29-36. https://doi.org/10.1016/j.jes.2014.04.016.
|
[46] |
Liu, Y., Li, J., Wu, L., Wan, D., Shi, Y., He, Q., Chen, J., 2021. Synergetic adsorption and Fenton-like degradation of tetracycline hydrochloride by magnetic spent bleaching earth carbon: Insights into performance and reaction mechanism. Sci. Total Environ. 761, 143956. https://doi.org/10.1016/j.scitotenv.2020.143956.
|
[47] |
Lu, M.C., Chen, J.N., Chang, C.P., 1999. Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst. J. Hazard. Mater. 65(3), 277-288. https://doi.org/10.1016/S0304-3894(98)00268-4.
|
[48] |
Luo, Y., Zheng, A., Li, J., Han, Y., Xue, M., Zhang, L., Yin, Z., Xie, C., Chen, Z., Ji, L., et al., 2023. Integrated adsorption and photodegradation of tetracycline by bismuth oxycarbonate/biochar nanocomposites. Chem. Eng. J. 457, 141228. https://doi.org/10.1016/j.cej.2022.141228.
|
[49] |
Ma, C., Jia, S., Yuan, P., He, Z., 2020. Catalytic ozonation of 2,2′-methylenebis (4-methyl-6-tert-butylphenol) over nano-Fe3O4@cow dung ash composites: Optimization, toxicity, and degradation mechanisms. Environ. Pollut. 265, 114597. https://doi.org/10.1016/j.envpol.2020.114597.
|
[50] |
Markovski, J.S., Dokic, V., Milosavljevic, M., Mitric, M., Peric-Grujic, A.A., Onjia, A.E., Marinkovic, A.D., 2014. Ultrasonic assisted arsenate adsorption on solvothermally synthesized calcite modified by goethite, α-MnO2 and goethite/α-MnO2. Ultrason. Sonochem. 21(2), 790-801. https://doi.org/10.1016/j.ultsonch.2013.10.006.
|
[51] |
Massoudi, J., Smari, M., Nouri, K., Dhahri, E., Khirouni, K., Bertaina, S., Bessais, L., Hlil, E.K., 2020. Magnetic and spectroscopic properties of Ni-Zn-Al ferrite spinel: From the nanoscale to microscale. RSC Advances 10(57), 34556-34580. https://doi.org/10.1039/D0RA05522K.
|
[52] |
Mateos-Aparicio, I., Mateos-Peinado, C., Ruperez, P., 2010. High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean. Innov. Food Sci. Emerg. Technol. 11(3), 445-450. https://doi.org/10.1016/j.ifset.2010.02.003.
|
[53] |
Moslehi, M.H., Eslami, M., Ghadirian, M., Nateq, K., Ramavandi, B., Nasseh, N., 2024a. Photocatalytic decomposition of metronidazole by zinc hexaferrite coated with bismuth oxyiodide magnetic nanocomposite: Advanced modelling and optimization with artificial neural network. Chemosphere 356, 141770. https://doi.org/10.1016/j.chemosphere.2024.141770.
|
[54] |
Moslehi, M.H., Zadeh, M.S., Nateq, K., Shahamat, Y.D., Khan, N.A., Nasseh, N., 2024b. Statistical computational optimization approach for photocatalytic-ozonation decontamination of metronidazole in aqueous media using CuFe2O4/SiO2/ZnO nanocomposite. Environmental Research 242, 117747. https://doi.org/10.1016/j.envres.2023.117747.
|
[55] |
Nguyen, T.B., Huang, C.P., Doong, R., 2019a. Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light. Sci. Total Environ. 646, 745-756. https://doi.org/10.1016/j.scitotenv.2018.07.352.
|
[56] |
Nguyen, T.B., Nguyen, T.K.T., Chen, W.H., Chen, C.W., Bui, X.T., Patel, A.K., Dong, C.D., 2023. Hydrothermal and pyrolytic conversion of sunflower seed husk into novel porous biochar for efficient adsorption of tetracycline. Bioresour. Technol. 373, 128711. https://doi.org/10.1016/j.biortech.2023.128711.
|
[57] |
Nguyen, T.T., Bui, X.T., Dang, B.T., Ngo, H.H., Jahng, D., Fujioka, T., Chen, S.S., Dinh, Q.T., Nguyen, C.N., Nguyen, P.T.V., 2019b. Effect of ciprofloxacin dosages on the performance of sponge membrane bioreactor treating hospital wastewater. Bioresour. Technol. 273, 573-580. https://doi.org/10.1016/j.biortech.2018.11.058.
|
[58] |
Nguyen, V.T., Nguyen, T.B., Huang, C.P., Chen, C.W., Bui, X.T., Dong, C.D., 2021. Alkaline modified biochar derived from spent coffee ground for removal of tetracycline from aqueous solutions. J. Water Process. Eng. 40, 101908. https://doi.org/10.1016/j.jwpe.2020.101908.
|
[59] |
Nguyen, V.T., Nguyen, T.B., Vo, T.D.H., Dat, N.D., Vo, T.K.Q., Nguyen, X.C., Dinh, V.C., Le, T.N.C., Duong, T.G.H., Bui, M.H., et al., 2024. Preliminary study of doxycycline adsorption from aqueous solution on alkaline modified biochar derived from banana peel. Environmental Engineering Research 29(3), 230196. https://doi.org/10.4491/eer.2023.196.
|
[60] |
Nidheesh, P.V., 2015. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: A review. RSC Advances 5(51), 40552-40577. https://doi.org/10.1039/C5RA02023A.
|
[61] |
Nikzad, M., Mousavi, S.Y., Heydarian, M., Rahmani, S., Shabanian, S.R., Hejazi, F., 2024. A review on recent advances in photodegradation of tetracycline in aqueous media. Journal of the Iranian Chemical Society 21(4), 887-902. https://doi.org/10.1007/s13738-024-02982-3.
|
[62] |
Olfatmehr, N., Kakavandi, B., Khezri, S.M., 2022. Peroxydisulfate activation by enhanced catalytic activity of ZnFe2O4 anchored on activated carbon: A new sulfate radical-based oxidation study on the cefixime degradation. Separation and Purification Technology 302, 121991. https://doi.org/10.1016/j.seppur.2022.121991.
|
[63] |
Ortiz-Ramos, U., Leyva-Ramos, R., Mendoza-Mendoza, E., Aragon-Pina, A., 2022. Removal of tetracycline from aqueous solutions by adsorption on raw Ca-bentonite. Effect of operating conditions and adsorption mechanism. Chemical Engineering Journal 432, 134428. https://doi.org/10.1016/j.cej.2021.134428.
|
[64] |
Peng, Z., Li, S., He, H., Wen, Y., Huang, H., Su, L., Yi, Z., Peng, X., Zhou, N., 2023. FeS and Fe3O4 Co-modified biochar to build a highly resistant advanced oxidation process system for quinclorac degradation in irrigation water. J. Environ. Manage. 348, 119492. https://doi.org/10.1016/j.jenvman.2023.119492.
|
[65] |
Qin, H., Cheng, H., Li, H., Wang, Y., 2020. Degradation of ofloxacin, amoxicillin and tetracycline antibiotics using magnetic core-shell MnFe2O4@C-NH2 as a heterogeneous Fenton catalyst. Chem. Eng. J. 396, 125304. https://doi.org/10.1016/j.cej.2020.125304.
|
[66] |
Qin, X., Cheng, S., Xing, B., Xiong, C., Yi, G., Shi, C., Xia, H., Zhang, C., 2023. Preparation of high-efficient MgCl2 modified biochar toward Cd(II) and tetracycline removal from wastewater. Sep. Purif. Technol. 325, 124625. https://doi.org/10.1016/j.seppur.2023.124625.
|
[67] |
Safari, G.H., Hoseini, M., Seyedsalehi, M., Kamani, H., Jaafari, J., Mahvi, A.H., 2015. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. Int. J. Environ. Sci. Technol. 12(2), 603-616. https://doi.org/10.1007/s13762-014-0706-9.
|
[68] |
Santhosh, C., Daneshvar, E., Tripathi, K.M., Baltrenas, P., Kim, T., Baltrenaite, E., Bhatnagar, A., 2020. Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(VI) and acid orange 7 dye from aqueous solution. Environmental Science and Pollution Research 27(26), 32874-32887. https://doi.org/10.1007/s11356-020-09275-1.
|
[69] |
Sevilla, M., Fuertes, A.B., 2009. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J. 15(16), 4195-4203. https://doi.org/10.1002/chem.200802097.
|
[70] |
Shao, C., Zhang, J., Wang, Z., Zhang, L., Wang, B., Ren, J., Zhang, X., He, W., 2024. Photo-Fenton degradation of tetracycline on nitrogen vacancy and potassium-doped Z-scheme FeOCl/NvCN heterojunction with low H2O2 consumption: Activity and mechanism. Journal of Alloys and Compounds 970, 172532. https://doi.org/10.1016/j.jallcom.2023.172532.
|
[71] |
Shi, Q., Wang, W., Zhang, H., Bai, H., Liu, K., Zhang, J., Li, Z., Zhu, W., 2023. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal. Bioresour. Technol. 383, 129213. https://doi.org/10.1016/j.biortech.2023.129213.
|
[72] |
Son, E.B., Poo, K.M., Chang, J.S., Chae, K.J., 2018. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci. Total Environ. 615, 161-168. https://doi.org/10.1016/j.scitotenv.2017.09.171.
|
[73] |
Su, R., Chai, L., Tang, C., Li, B., Yang, Z., 2018. Comparison of the degradation of molecular and ionic ibuprofen in a UV/H2O2 system. Water Sci. Technol. 77(9), 2174-2183. https://doi.org/10.2166/wst.2018.129.
|
[74] |
Su, R., Dai, X., Wang, H., Wang, Z., Li, Z., Chen, Y., Luo, Y., Ouyang, D., 2022. Metronidazole degradation by UV and UV/H2O2 advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Int. J. Env. Res. Public Health 19(19), 12354. https://doi.org/10.3390/ijerph191912354.
|
[75] |
Sun, J., Zhu, W., Cao, J., Zhong, J., Mu, B., Wang, X., Lin, N., 2023a. Improving the yield and tetracycline adsorption performance of kitchen waste biochar through subcritical dimethyl ether pretreatment. J. Environ. Chem. Eng. 11(5), 110459. https://doi.org/10.1016/j.jece.2023.110459.
|
[76] |
Sun, K., Jin, J., Keiluweit, M., Kleber, M., Wang, Z., Pan, Z., Xing, B., 2012. Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresour. Technol. 118, 120-127. https://doi.org/10.1016/j.biortech.2012.05.008.
|
[77] |
Sun, M., Ma, Y., Yang, Y., Zhu, X., 2023b. Effect of iron impregnation ratio on the properties and adsorption of KOH activated biochar for removal of tetracycline and heavy metals. Bioresour. Technol. 380, 129081. https://doi.org/10.1016/j.biortech.2023.129081.
|
[78] |
Sun, Y., Li, C., Zhang, S., Li, Q., Gholizadeh, M., Wang, Y., Hu, S., Xiang, J., Hu, X., 2021. Pyrolysis of soybean residue: Understanding characteristics of the products. Renewable Energy 174, 487-500. https://doi.org/10.1016/j.renene.2021.04.063.
|
[79] |
Tang, J., Ma, Y., Zeng, C., Yang, L., Cui, S., Zhi, S., Yang, F., Ding, Y., Zhang, K., Zhang, Z., 2023. Fe-Al bimetallic oxides functionalized-biochar via ball milling for enhanced adsorption of tetracycline in water. Bioresour. Technol. 369, 128385. https://doi.org/10.1016/j.biortech.2022.128385.
|
[80] |
United States Department of Agriculture (USDA), 2024. World Agricultural Supply and Demand Estimates. USDA, Washington D.C.
|
[81] |
Wang, B., Jiang, Y.S., Li, F.Y., Yang, D.Y., 2017. Preparation of biochar by simultaneous carbonization, magnetization and activation for norfloxacin removal in water. Bioresour. Technol. 233, 159-165. https://doi.org/10.1016/j.biortech.2017.02.103.
|
[82] |
Wang, N., Zheng, T., Zhang, G., Wang, P., 2016. A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng. 4(1), 762-787. https://doi.org/10.1016/j.jece.2015.12.016.
|
[83] |
Weidner, E., Siwinska-Ciesielczyk, K., Moszynski, D., Jesionowski, T., Ciesielczyk, F., 2021. A comprehensive method for tetracycline removal using lanthanum-enriched titania-zirconia oxide system with tailored physicochemical properties. Environ. Technol. Innov. 24, 102016. https://doi.org/10.1016/j.eti.2021.102016.
|
[84] |
Wijitkosum, S., 2022. Biochar derived from agricultural wastes and wood residues for sustainable agricultural and environmental applications. Int. Soil Water Conserv. Res. 10(2), 335-341. https://doi.org/10.1016/j.iswcr.2021.09.006.
|
[85] |
Yang, X., Fan, J., Jiang, L., Zhu, F., Yan, Z., Li, X., Jiang, P., Li, X., Xue, S., 2024. Using Fe/H2O2-modified biochar to realize field-scale Sb/As stabilization and soil structure improvement in an Sb smelting site. Sci. Total Environ. 912, 168775. https://doi.org/10.1016/j.scitotenv.2023.168775.
|
[86] |
Zhang, H., Wan, K., Yan, J., Li, Q., Guo, Y., Huang, L., Arulmani, S.R.B., Luo, J., 2024. The function of doping nitrogen on removing fluoride with decomposing La-MOF-NH2: Density functional theory calculation and experiments. J. Environ. Sci. 135, 118-129. https://doi.org/10.1016/j.jes.2023.01.015.
|
[87] |
Zhang, X., Zhen, D., Liu, F., Chen, R., Peng, Q., Wang, Z., 2023a. An achieved strategy for magnetic biochar for removal of tetracyclines and fluoroquinolones: Adsorption and mechanism studies. Bioresour. Technol. 369, 128440. https://doi.org/10.1016/j.biortech.2022.128440.
|
[88] |
Zhang, Y., Shi, J., Xu, Z., Chen, Y., Song, D., 2018. Degradation of tetracycline in a schorl/H2O2 system: Proposed mechanism and intermediates. Chemosphere 202, 661-668. https://doi.org/10.1016/j.chemosphere.2018.03.116.
|
[89] |
Zhang, Y., Zhang, J., Chen, K., Shen, S., Hu, H., Chang, M., Chen, D., Wu, Y., Yuan, H., Wang, Y., 2023b. Engineering banana-peel-derived biochar for the rapid adsorption of tetracycline based on double chemical activation. Resour. Conserv. Recy. 190, 106821. https://doi.org/10.1016/j.resconrec.2022.106821.
|
[90] |
Zhao, L., Zhao, Y.G., Jin, C., Yang, D., Zhang, Y., Progress, M., 2024. Removal of tetracycline by ultraviolet/sodium percarbonate (UV/SPC) advanced oxidation process in water. Environmental Research 247, 118260. https://doi.org/10.1016/j.envres.2024.118260.
|
[91] |
Zhao, W., Chen, L., Jiang, Y., 2023. Preparation of activated carbon from sunflower straw through H3PO4 activation and its application for acid fuchsin dye adsorption. Water Sci. Eng. 16(2), 192-202. https://doi.org/10.1016/j.wse.2023.02.002.
|
[92] |
Zhu, X., Liu, Y., Qian, F., Zhou, C., Zhang, S., Chen, J., 2014. Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresour. Technol. 154, 209-214. https://doi.org/10.1016/j.biortech.2013.12.019.
|
[93] |
Zhu, Y.G., Johnson, T.A., Su, J.Q., Qiao, M., Guo, G.X., Stedtfeld, R.D., Hashsham, S.A., Tiedje, J.M., 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America 110(9), 3435-3440. 10.1073/pnas.1222743110.
|