Volume 18 Issue 2
Jun.  2025
Turn off MathJax
Article Contents
Van-Truc Nguyen, Nguyen Duy Dat, Thi-Giang-Huong Duong, Viet-Cuong Dinh, Thi-Dieu-Hien Vo. 2025: Degradation of tetracycline in water using hydrogen peroxide activated by soybean residue-derived magnetic biochar. Water Science and Engineering, 18(2): 129-140. doi: 10.1016/j.wse.2024.10.001
Citation: Van-Truc Nguyen, Nguyen Duy Dat, Thi-Giang-Huong Duong, Viet-Cuong Dinh, Thi-Dieu-Hien Vo. 2025: Degradation of tetracycline in water using hydrogen peroxide activated by soybean residue-derived magnetic biochar. Water Science and Engineering, 18(2): 129-140. doi: 10.1016/j.wse.2024.10.001

Degradation of tetracycline in water using hydrogen peroxide activated by soybean residue-derived magnetic biochar

doi: 10.1016/j.wse.2024.10.001
  • Received Date: 2024-05-20
  • Accepted Date: 2024-09-27
  • Available Online: 2025-06-24
  • Tetracyclines (TCs) are the second most commonly used antibiotics worldwide, utilized in medical treatments and animal husbandry. Although effective against various infectious diseases, TC residues persist in the environment and contribute to the emergence of antibiotic-resistant pathogens, posing significant risks to human health. This study employed the heterogeneous Fenton process to degrade TC using soybean residue-derived magnetic biochar (Fe-SoyB) as the catalyst. The Fe-SoyB sample was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and superconducting quantum interference device (SQUID) techniques. The effects of key parameters, including pH, H2O2 concentration, catalyst dosage, and initial TC concentration, on TC degradation were investigated. The results indicated that the TC removal efficiency decreased with increasing initial TC concentration, while it was improved with higher H2O2 concentrations and greater catalyst dosages. The optimal conditions for the Fenton-like process were determined: a pH of 3, a H2O2 concentration of 245 mmol/L, an initial TC concentration of 800 mg/L, and a catalyst dosage of 0.75 g/L, achieving a removal efficiency of 90.0% after 150 min. Additionally, the TC removal efficiency of the Fe-SoyB system varied significantly across different water matrices, with 87.1% for deionized water, 78.5% for tap water, and 72.5% for river water. The catalyst demonstrated notable stability, maintaining a TC removal efficiency of 79.7% after three cycles of use. Overall, Fe-SoyB shows promise as a cost-effective catalyst for the elimination of organic pollutants in aqueous solutions.

     

  • loading
  • [1]
    Akindolie, M.S., Choi, H.J., 2022. Surface modification of spent coffee grounds using phosphoric acid for enhancement of methylene blue adsorption from aqueous solution. Water Sci. Technol. 85(4), 1218-1234. https://doi.org/10.2166/wst.2022.021.
    [2]
    Amarzadeh, M., Azqandi, M., Nateq, K., Ramavandi, B., Khan, N.A., Nasseh, N., 2023. Heterogeneous Fenton-like photocatalytic process towards the eradication of tetracycline under UV irradiation: Mechanism elucidation and environmental risk analysis. Water 15(3), 2336. https://doi.org/10.3390/w15132336.
    [3]
    Azqandi, M., Nateq, K., Amarzadeh, M., Yoosefian, M., Yaghoot-Nezhad, A., Ahmad, A., Ramavandi, B., Nasseh, N., 2024. Intensified photo-decontamination of tetracycline antibiotic by S-scheme spinel manganese ferrite-grafted ZIF-8 heterojunction photocatalyst: Mechanism conception, degradation pathway and DFT studies. Journal of Environmental Chemical Engineering 12(3), 112875. https://doi.org/10.1016/j.jece.2024.112875.
    [4]
    Bagheri, A., Abu-Danso, E., Iqbal, J., Bhatnagar, A., 2020. Modified biochar from Moringa seed powder for the removal of diclofenac from aqueous solution. Environmental Science and Pollution Research 27(7), 7318-7327. https://doi.org/10.1007/s11356-019-06844-x.
    [5]
    Baird, R., Rice, E., Eaton, A., 2017. Standard Methods for the Examination of Water and Wastewaters. American Water Works Association, Denver.
    [6]
    Barikbin, B., Arghavan, F.S., Othmani, A., Panahi, A.H., Nasseh, N., 2020. Degradation of tetracycline in Fenton and heterogeneous Fenton like processes by using FeNi3 and FeNi3/SiO2 catalysts. Desalin. Water Treat. 200, 262-274. https://doi.org/10.5004/dwt.2020.26061.
    [7]
    Bokare, A.D., Choi, W., 2014. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 275, 121-135. https://doi.org/10.1016/j.jhazmat.2014.04.054.
    [8]
    Borba, L.L., Cuba, R.M.F., Teran, F.J.C., Castro, M.N., Mendes, T.A., 2019. Use of adsorbent biochar from pequi (Caryocar brasiliense) husks for the removal of commercial formulation of glyphosate from aqueous media. Brazilian Archives of Biology and Technology 62(10), e19180450. https://doi.org/10.1590/1678-4324-2019180450.
    [9]
    Cao, Y., Cui, K., Chen, Y., Cui, M., Li, G., Li, D., Yang, X., 2021. Efficient degradation of tetracycline by H2O2 catalyzed by FeOCl: A wide range of pH values from 3 to 7. Solid State Sci. 113, 106548. https://doi.org/10.1016/j.solidstatesciences.2021.106548.
    [10]
    Chen, L., Mi, B., He, J., Li, Y., Zhou, Z., Wu, F., 2023. Functionalized biochars with highly-efficient malachite green adsorption property produced from banana peels via microwave-assisted pyrolysis. Bioresour. Technol. 376, 128840. https://doi.org/10.1016/j.biortech.2023.128840.
    [11]
    Cheng, X., Liang, L., Ye, J., Li, N., Yan, B., Chen, G., 2023a. Influence and mechanism of water matrices on H2O2-based Fenton-like oxidation processes: A review. Sci. Total Environ. 888, 164086. https://doi.org/10.1016/j.scitotenv.2023.164086.
    [12]
    Cheng, Y., Deng, L., Wang, D., Wang, X., Ji, C., Zhou, Y.H., 2023b. CuS@ Cu-CD composites as efficient heterogeneous Fenton-like catalysts for the photodegradation of tetracycline. Adv. Environ. Sci. 2(3), 495-507. https://doi.org/10.1039/d2va00139j.
    [13]
    Cho, D.W., Yoon, K., Kwon, E.E., Biswas, J.K., Song, H., 2017. Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl3-pretreated spent coffee ground. Environ. Pollut. 229, 942-949. https://doi.org/10.1016/j.envpol.2017.07.079.
    [14]
    Devi, P., Saroha, A.K., 2017. Utilization of sludge based adsorbents for the removal of various pollutants: A review. Sci. Total Environ. 578, 16-33. https://doi.org/10.1016/j.scitotenv.2016.10.220.
    [15]
    Du, L., Ahmad, S., Liu, L., Wang, L., Tang, J., 2023. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water. Sci. Total Environ. 858, 159815. https://doi.org/10.1016/j.scitotenv.2022.159815.
    [16]
    Foroutan, R., Jamaleddin Peighambardoust, S., Amarzadeh, M., Kiani Korri, A., Sadat Peighambardoust, N., Ahmad, A., Ramavandi, B., 2022. Nickel ions abatement from aqueous solutions and shipbuilding industry wastewater using ZIF-8-chicken beak hydroxyapatite. Journal of Molecular Liquids 356, 119003. https://doi.org/10.1016/j.molliq.2022.119003.
    [17]
    Fu, M.M., Mo, C.H., Li, H., Zhang, Y.N., Huang, W.X., Wong, M.H., 2019. Comparison of physicochemical properties of biochars and hydrochars produced from food wastes. Journal of Cleaner Production 236, 117637. https://doi.org/10.1016/j.jclepro.2019.117637.
    [18]
    Ganesapillai, M., Mehta, R., Tiwari, A., Sinha, A., Bakshi, H.S., Chellappa, V., Drewnowski, J., 2023. Waste to energy: A review of biochar production with emphasis on mathematical modelling and its applications. Heliyon 9(4), e14873. https://doi.org/10.1016/j.heliyon.2023.e14873.
    [19]
    Ghanbari, F., Riahi, M., Kakavandi, B., Hong, X., Lin, K.Y.A., 2020. Intensified peroxydisulfate/microparticles-zero valent iron process through aeration for degradation of organic pollutants: Kinetic studies, mechanism and effect of anions. Journal of Water Process Engineering 36, 101321. https://doi.org/10.1016/j.jwpe.2020.101321.
    [20]
    Hou, L., Wang, L., Royer, S., Zhang, H., 2016. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. J. Hazard. Mater. 302, 458-467. https://doi.org/10.1016/j.jhazmat.2015.09.033.
    [21]
    Hu, T., Zhao, S., Huang, Y., Chen, Z., Zhang, X., Wei, C., Zeng, S., Liu, L., 2023. Potential removals of tetracycline and sulfamethoxazole by iron-loaded sludge biochar. J. Water Process. Eng. 54, 103962. https://doi.org/10.1016/j.jwpe.2023.103962.
    [22]
    Huang, X., Zhou, H., Yue, X., Ran, S., Zhu, J., 2021. Novel magnetic Fe3O4/α-FeOOH nanocomposites and their enhanced mechanism for tetracycline hydrochloride removal in the visible photo-Fenton process. ACS Omega 6(13), 9095-9103. https://doi.org/10.1021/acsomega.1c00204.
    [23]
    Huang, Z., Fang, X., Wang, S., Zhou, N., Fan, S., 2023. Effects of KMnO4 pre- and post-treatments on biochar properties and its adsorption of tetracycline. J. Mol. Liq. 373, 121257. https://doi.org/10.1016/j.molliq.2023.121257.
    [24]
    Isaac, R., Siddiqui, S., Aldosari, O.F., Kashif Uddin, M., 2023. Magnetic biochar derived from Juglans regia for the adsorption of Cu2+ and Ni2+: Characterization, modelling, optimization, and cost analysis. J. Saudi Chem. Soc. 27(6), 101749. https://doi.org/10.1016/j.jscs.2023.101749.
    [25]
    Jaiswal, A., Banerjee, S., Mani, R., Chattopadhyaya, M.C., 2013. Synthesis, characterization and application of goethite mineral as an adsorbent. J. Environ. Chem. Eng. 1(3), 281-289. https://doi.org/10.1016/j.jece.2013.05.007.
    [26]
    Jaiswal, K.K., Kumar, V., Vlaskin, M.S., Nanda, M., Verma, M., Ahmad, W., Kim, H., 2021. Hydropyrolysis of freshwater macroalgal bloom for bio-oil and biochar production: Kinetics and isotherm for removal of multiple heavy metals. Environ. Technol. Innov. 22, 101440. https://doi.org/10.1016/j.eti.2021.101440.
    [27]
    Jang, H.M., Kan, E., 2019. A novel hay-derived biochar for removal of tetracyclines in water. Bioresource Technology 274, 162-172. https://doi.org/10.1016/j.biortech.2018.11.081.
    [28]
    Jiang, H., Dai, Y., 2023. Vitamin C modified crayfish shells biochar efficiently remove tetracycline from water: A good medicine for water restoration. Chemosphere 311, 136884. https://doi.org/10.1016/j.chemosphere.2022.136884.
    [29]
    Jiang, W., Cai, Y., Liu, D., Shi, Q., Wang, Q., 2023. Adsorption properties and mechanism of suaeda biochar and modified materials for tetracycline. Environ. Res. 235, 116549. https://doi.org/10.1016/j.envres.2023.116549.
    [30]
    Jiao, Y., Han, D., Lu, Y., Rong, Y., Fang, L., Liu, Y., Han, R., 2017. Characterization of pine-sawdust pyrolytic char activated by phosphoric acid through microwave irradiation and adsorption property toward CDNB in batch mode. Desalination and Water Treatment 77, 247-255. https://doi.org/10.5004/dwt.2017.20780.
    [31]
    Jing, S., Zhao, J., Wang, A., Ji, Q., Cheng, R., Liang, H., Chen, F., Kannan, P., Brouzgou, A., Tsiakaras, P., 2024. Efficient photocatalytic production of H2O2 and photodegradation of tetracycline by CdS/square tubular g-C3N4 S-scheme heterojunction photocatalyst. Chemical Engineering Journal 479, 147150. https://doi.org/10.1016/j.cej.2023.147150.
    [32]
    Kakavandi, B., Babaei, A.A., 2016. Heterogeneous Fenton-like oxidation of petrochemical wastewater using a magnetically separable catalyst (MNPs@C): Process optimization, reaction kinetics and degradation mechanisms. RSC Advances 6(88), 84999-85011. https://doi.org/10.1039/C6RA17624K.
    [33]
    Kubilay, S., Gurkan, R., Savran, A., Sahan, T., 2007. Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption 13(1), 41-51. https://doi.org/10.1007/s10450-007-9003-y.
    [34]
    Kurniawan, T.A., Othman, M.H.D., Liang, X., Goh, H.H., Gikas, P., Chong, K.K., Chew, K.W., 2023. Challenges and opportunities for biochar to promote circular economy and carbon neutrality. J. Environ. Manage. 332, 117429. https://doi.org/10.1016/j.jenvman.2023.117429.
    [35]
    Lee, Y.J., Lee, J.M., Huang, M., Park, S.J., Lee, C.G., 2023. Degradation of imidacloprid via the activation of peroxymonosulfate and peroxydisulfate using a Fenton-sludge-derived Fe0/Fe3C composite. J. Water Process. Eng. 56, 104347. https://doi.org/10.1016/j.jwpe.2023.104347.
    [36]
    Li, D., Yu, J., Jia, J., He, H., Shi, W., Zheng, T., Ma, J., 2022a. Coupling electrode aeration and hydroxylamine for the enhanced electro-Fenton degradation of organic contaminant: Improving H2O2 generation, Fe3+/Fe2+ cycle and N2 selectivity. Water Res. 214, 118167. https://doi.org/10.1016/j.watres.2022.118167.
    [37]
    Li, J., Liu, Y., Ren, X., Dong, W., Chen, H., Cai, T., Zeng, W., Li, W., Tang, L., 2021. Soybean residue based biochar prepared by ball milling assisted alkali activation to activate peroxydisulfate for the degradation of tetracycline. J. Colloid Interface Sci. 599, 631-641. https://doi.org/10.1016/j.jcis.2021.04.074.
    [38]
    Li, S., Han, K., Li, J., Li, M., Lu, C., 2017. Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Micropor. Mesopor. Mat. 243, 291-300. https://doi.org/10.1016/j.micromeso.2017.02.052.
    [39]
    Li, X., Cui, K., Guo, Z., Yang, T., Cao, Y., Xiang, Y., Chen, H., Xi, M., 2020. Heterogeneous Fenton-like degradation of tetracyclines using porous magnetic chitosan microspheres as an efficient catalyst compared with two preparation methods. Chem. Eng. J. 379, 122324. https://doi.org/10.1016/j.cej.2019.122324.
    [40]
    Li, X., Jia, Y., Zhang, J., Qin, Y., Wu, Y., Zhou, M., Sun, J., 2022b. Efficient removal of tetracycline by H2O2 activated with iron-doped biochar: Performance, mechanism, and degradation pathways. Chin. Chem. Lett. 33(4), 2105-2110. https://doi.org/10.1016/j.cclet.2021.08.054.
    [41]
    Li, Y., Gupta, R., Zhang, Q., You, S., 2023. Review of biochar production via crop residue pyrolysis: Development and perspectives. Bioresour. Technol. 369, 128423. https://doi.org/10.1016/j.biortech.2022.128423.
    [42]
    Liou, M.J., Lu, M.C., 2008. Catalytic degradation of explosives with goethite and hydrogen peroxide. J. Hazard. Mater. 151(2), 540-546. https://doi.org/10.1016/j.jhazmat.2007.06.016.
    [43]
    Liu, J., Li, X., Chu, Y., Yuan, L., Lv, R., Zhang, W., 2023. An autocatalytic Fe(III)/H2O2 Fenton-like process triggered by tetracycline: The overlooked effect of quinone intermediates. Chem. Eng. J. 475, 146035. https://doi.org/10.1016/j.cej.2023.146035.
    [44]
    Liu, P., Li, H., Liu, X., Wan, Y., Han, X., Zou, W., 2020. Preparation of magnetic biochar obtained from one-step pyrolysis of Salix mongolica and investigation into adsorption behavior of sulfadimidine sodium and norfloxacin in aqueous solution. J. Dispers. Sci. Technol. 41(2), 214-226. https://doi.org/10.1080/01932691.2018.1562354.
    [45]
    Liu, Q., Zheng, Y., Zhong, L., Cheng, X., 2015. Removal of tetracycline from aqueous solution by a Fe3O4 incorporated PAN electrospun nanofiber mat. Journal of Environmental Sciences 28, 29-36. https://doi.org/10.1016/j.jes.2014.04.016.
    [46]
    Liu, Y., Li, J., Wu, L., Wan, D., Shi, Y., He, Q., Chen, J., 2021. Synergetic adsorption and Fenton-like degradation of tetracycline hydrochloride by magnetic spent bleaching earth carbon: Insights into performance and reaction mechanism. Sci. Total Environ. 761, 143956. https://doi.org/10.1016/j.scitotenv.2020.143956.
    [47]
    Lu, M.C., Chen, J.N., Chang, C.P., 1999. Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst. J. Hazard. Mater. 65(3), 277-288. https://doi.org/10.1016/S0304-3894(98)00268-4.
    [48]
    Luo, Y., Zheng, A., Li, J., Han, Y., Xue, M., Zhang, L., Yin, Z., Xie, C., Chen, Z., Ji, L., et al., 2023. Integrated adsorption and photodegradation of tetracycline by bismuth oxycarbonate/biochar nanocomposites. Chem. Eng. J. 457, 141228. https://doi.org/10.1016/j.cej.2022.141228.
    [49]
    Ma, C., Jia, S., Yuan, P., He, Z., 2020. Catalytic ozonation of 2,2′-methylenebis (4-methyl-6-tert-butylphenol) over nano-Fe3O4@cow dung ash composites: Optimization, toxicity, and degradation mechanisms. Environ. Pollut. 265, 114597. https://doi.org/10.1016/j.envpol.2020.114597.
    [50]
    Markovski, J.S., Dokic, V., Milosavljevic, M., Mitric, M., Peric-Grujic, A.A., Onjia, A.E., Marinkovic, A.D., 2014. Ultrasonic assisted arsenate adsorption on solvothermally synthesized calcite modified by goethite, α-MnO2 and goethite/α-MnO2. Ultrason. Sonochem. 21(2), 790-801. https://doi.org/10.1016/j.ultsonch.2013.10.006.
    [51]
    Massoudi, J., Smari, M., Nouri, K., Dhahri, E., Khirouni, K., Bertaina, S., Bessais, L., Hlil, E.K., 2020. Magnetic and spectroscopic properties of Ni-Zn-Al ferrite spinel: From the nanoscale to microscale. RSC Advances 10(57), 34556-34580. https://doi.org/10.1039/D0RA05522K.
    [52]
    Mateos-Aparicio, I., Mateos-Peinado, C., Ruperez, P., 2010. High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean. Innov. Food Sci. Emerg. Technol. 11(3), 445-450. https://doi.org/10.1016/j.ifset.2010.02.003.
    [53]
    Moslehi, M.H., Eslami, M., Ghadirian, M., Nateq, K., Ramavandi, B., Nasseh, N., 2024a. Photocatalytic decomposition of metronidazole by zinc hexaferrite coated with bismuth oxyiodide magnetic nanocomposite: Advanced modelling and optimization with artificial neural network. Chemosphere 356, 141770. https://doi.org/10.1016/j.chemosphere.2024.141770.
    [54]
    Moslehi, M.H., Zadeh, M.S., Nateq, K., Shahamat, Y.D., Khan, N.A., Nasseh, N., 2024b. Statistical computational optimization approach for photocatalytic-ozonation decontamination of metronidazole in aqueous media using CuFe2O4/SiO2/ZnO nanocomposite. Environmental Research 242, 117747. https://doi.org/10.1016/j.envres.2023.117747.
    [55]
    Nguyen, T.B., Huang, C.P., Doong, R., 2019a. Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light. Sci. Total Environ. 646, 745-756. https://doi.org/10.1016/j.scitotenv.2018.07.352.
    [56]
    Nguyen, T.B., Nguyen, T.K.T., Chen, W.H., Chen, C.W., Bui, X.T., Patel, A.K., Dong, C.D., 2023. Hydrothermal and pyrolytic conversion of sunflower seed husk into novel porous biochar for efficient adsorption of tetracycline. Bioresour. Technol. 373, 128711. https://doi.org/10.1016/j.biortech.2023.128711.
    [57]
    Nguyen, T.T., Bui, X.T., Dang, B.T., Ngo, H.H., Jahng, D., Fujioka, T., Chen, S.S., Dinh, Q.T., Nguyen, C.N., Nguyen, P.T.V., 2019b. Effect of ciprofloxacin dosages on the performance of sponge membrane bioreactor treating hospital wastewater. Bioresour. Technol. 273, 573-580. https://doi.org/10.1016/j.biortech.2018.11.058.
    [58]
    Nguyen, V.T., Nguyen, T.B., Huang, C.P., Chen, C.W., Bui, X.T., Dong, C.D., 2021. Alkaline modified biochar derived from spent coffee ground for removal of tetracycline from aqueous solutions. J. Water Process. Eng. 40, 101908. https://doi.org/10.1016/j.jwpe.2020.101908.
    [59]
    Nguyen, V.T., Nguyen, T.B., Vo, T.D.H., Dat, N.D., Vo, T.K.Q., Nguyen, X.C., Dinh, V.C., Le, T.N.C., Duong, T.G.H., Bui, M.H., et al., 2024. Preliminary study of doxycycline adsorption from aqueous solution on alkaline modified biochar derived from banana peel. Environmental Engineering Research 29(3), 230196. https://doi.org/10.4491/eer.2023.196.
    [60]
    Nidheesh, P.V., 2015. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: A review. RSC Advances 5(51), 40552-40577. https://doi.org/10.1039/C5RA02023A.
    [61]
    Nikzad, M., Mousavi, S.Y., Heydarian, M., Rahmani, S., Shabanian, S.R., Hejazi, F., 2024. A review on recent advances in photodegradation of tetracycline in aqueous media. Journal of the Iranian Chemical Society 21(4), 887-902. https://doi.org/10.1007/s13738-024-02982-3.
    [62]
    Olfatmehr, N., Kakavandi, B., Khezri, S.M., 2022. Peroxydisulfate activation by enhanced catalytic activity of ZnFe2O4 anchored on activated carbon: A new sulfate radical-based oxidation study on the cefixime degradation. Separation and Purification Technology 302, 121991. https://doi.org/10.1016/j.seppur.2022.121991.
    [63]
    Ortiz-Ramos, U., Leyva-Ramos, R., Mendoza-Mendoza, E., Aragon-Pina, A., 2022. Removal of tetracycline from aqueous solutions by adsorption on raw Ca-bentonite. Effect of operating conditions and adsorption mechanism. Chemical Engineering Journal 432, 134428. https://doi.org/10.1016/j.cej.2021.134428.
    [64]
    Peng, Z., Li, S., He, H., Wen, Y., Huang, H., Su, L., Yi, Z., Peng, X., Zhou, N., 2023. FeS and Fe3O4 Co-modified biochar to build a highly resistant advanced oxidation process system for quinclorac degradation in irrigation water. J. Environ. Manage. 348, 119492. https://doi.org/10.1016/j.jenvman.2023.119492.
    [65]
    Qin, H., Cheng, H., Li, H., Wang, Y., 2020. Degradation of ofloxacin, amoxicillin and tetracycline antibiotics using magnetic core-shell MnFe2O4@C-NH2 as a heterogeneous Fenton catalyst. Chem. Eng. J. 396, 125304. https://doi.org/10.1016/j.cej.2020.125304.
    [66]
    Qin, X., Cheng, S., Xing, B., Xiong, C., Yi, G., Shi, C., Xia, H., Zhang, C., 2023. Preparation of high-efficient MgCl2 modified biochar toward Cd(II) and tetracycline removal from wastewater. Sep. Purif. Technol. 325, 124625. https://doi.org/10.1016/j.seppur.2023.124625.
    [67]
    Safari, G.H., Hoseini, M., Seyedsalehi, M., Kamani, H., Jaafari, J., Mahvi, A.H., 2015. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. Int. J. Environ. Sci. Technol. 12(2), 603-616. https://doi.org/10.1007/s13762-014-0706-9.
    [68]
    Santhosh, C., Daneshvar, E., Tripathi, K.M., Baltrenas, P., Kim, T., Baltrenaite, E., Bhatnagar, A., 2020. Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(VI) and acid orange 7 dye from aqueous solution. Environmental Science and Pollution Research 27(26), 32874-32887. https://doi.org/10.1007/s11356-020-09275-1.
    [69]
    Sevilla, M., Fuertes, A.B., 2009. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J. 15(16), 4195-4203. https://doi.org/10.1002/chem.200802097.
    [70]
    Shao, C., Zhang, J., Wang, Z., Zhang, L., Wang, B., Ren, J., Zhang, X., He, W., 2024. Photo-Fenton degradation of tetracycline on nitrogen vacancy and potassium-doped Z-scheme FeOCl/NvCN heterojunction with low H2O2 consumption: Activity and mechanism. Journal of Alloys and Compounds 970, 172532. https://doi.org/10.1016/j.jallcom.2023.172532.
    [71]
    Shi, Q., Wang, W., Zhang, H., Bai, H., Liu, K., Zhang, J., Li, Z., Zhu, W., 2023. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal. Bioresour. Technol. 383, 129213. https://doi.org/10.1016/j.biortech.2023.129213.
    [72]
    Son, E.B., Poo, K.M., Chang, J.S., Chae, K.J., 2018. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci. Total Environ. 615, 161-168. https://doi.org/10.1016/j.scitotenv.2017.09.171.
    [73]
    Su, R., Chai, L., Tang, C., Li, B., Yang, Z., 2018. Comparison of the degradation of molecular and ionic ibuprofen in a UV/H2O2 system. Water Sci. Technol. 77(9), 2174-2183. https://doi.org/10.2166/wst.2018.129.
    [74]
    Su, R., Dai, X., Wang, H., Wang, Z., Li, Z., Chen, Y., Luo, Y., Ouyang, D., 2022. Metronidazole degradation by UV and UV/H2O2 advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Int. J. Env. Res. Public Health 19(19), 12354. https://doi.org/10.3390/ijerph191912354.
    [75]
    Sun, J., Zhu, W., Cao, J., Zhong, J., Mu, B., Wang, X., Lin, N., 2023a. Improving the yield and tetracycline adsorption performance of kitchen waste biochar through subcritical dimethyl ether pretreatment. J. Environ. Chem. Eng. 11(5), 110459. https://doi.org/10.1016/j.jece.2023.110459.
    [76]
    Sun, K., Jin, J., Keiluweit, M., Kleber, M., Wang, Z., Pan, Z., Xing, B., 2012. Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresour. Technol. 118, 120-127. https://doi.org/10.1016/j.biortech.2012.05.008.
    [77]
    Sun, M., Ma, Y., Yang, Y., Zhu, X., 2023b. Effect of iron impregnation ratio on the properties and adsorption of KOH activated biochar for removal of tetracycline and heavy metals. Bioresour. Technol. 380, 129081. https://doi.org/10.1016/j.biortech.2023.129081.
    [78]
    Sun, Y., Li, C., Zhang, S., Li, Q., Gholizadeh, M., Wang, Y., Hu, S., Xiang, J., Hu, X., 2021. Pyrolysis of soybean residue: Understanding characteristics of the products. Renewable Energy 174, 487-500. https://doi.org/10.1016/j.renene.2021.04.063.
    [79]
    Tang, J., Ma, Y., Zeng, C., Yang, L., Cui, S., Zhi, S., Yang, F., Ding, Y., Zhang, K., Zhang, Z., 2023. Fe-Al bimetallic oxides functionalized-biochar via ball milling for enhanced adsorption of tetracycline in water. Bioresour. Technol. 369, 128385. https://doi.org/10.1016/j.biortech.2022.128385.
    [80]
    United States Department of Agriculture (USDA), 2024. World Agricultural Supply and Demand Estimates. USDA, Washington D.C.
    [81]
    Wang, B., Jiang, Y.S., Li, F.Y., Yang, D.Y., 2017. Preparation of biochar by simultaneous carbonization, magnetization and activation for norfloxacin removal in water. Bioresour. Technol. 233, 159-165. https://doi.org/10.1016/j.biortech.2017.02.103.
    [82]
    Wang, N., Zheng, T., Zhang, G., Wang, P., 2016. A review on Fenton-like processes for organic wastewater treatment. J. Environ. Chem. Eng. 4(1), 762-787. https://doi.org/10.1016/j.jece.2015.12.016.
    [83]
    Weidner, E., Siwinska-Ciesielczyk, K., Moszynski, D., Jesionowski, T., Ciesielczyk, F., 2021. A comprehensive method for tetracycline removal using lanthanum-enriched titania-zirconia oxide system with tailored physicochemical properties. Environ. Technol. Innov. 24, 102016. https://doi.org/10.1016/j.eti.2021.102016.
    [84]
    Wijitkosum, S., 2022. Biochar derived from agricultural wastes and wood residues for sustainable agricultural and environmental applications. Int. Soil Water Conserv. Res. 10(2), 335-341. https://doi.org/10.1016/j.iswcr.2021.09.006.
    [85]
    Yang, X., Fan, J., Jiang, L., Zhu, F., Yan, Z., Li, X., Jiang, P., Li, X., Xue, S., 2024. Using Fe/H2O2-modified biochar to realize field-scale Sb/As stabilization and soil structure improvement in an Sb smelting site. Sci. Total Environ. 912, 168775. https://doi.org/10.1016/j.scitotenv.2023.168775.
    [86]
    Zhang, H., Wan, K., Yan, J., Li, Q., Guo, Y., Huang, L., Arulmani, S.R.B., Luo, J., 2024. The function of doping nitrogen on removing fluoride with decomposing La-MOF-NH2: Density functional theory calculation and experiments. J. Environ. Sci. 135, 118-129. https://doi.org/10.1016/j.jes.2023.01.015.
    [87]
    Zhang, X., Zhen, D., Liu, F., Chen, R., Peng, Q., Wang, Z., 2023a. An achieved strategy for magnetic biochar for removal of tetracyclines and fluoroquinolones: Adsorption and mechanism studies. Bioresour. Technol. 369, 128440. https://doi.org/10.1016/j.biortech.2022.128440.
    [88]
    Zhang, Y., Shi, J., Xu, Z., Chen, Y., Song, D., 2018. Degradation of tetracycline in a schorl/H2O2 system: Proposed mechanism and intermediates. Chemosphere 202, 661-668. https://doi.org/10.1016/j.chemosphere.2018.03.116.
    [89]
    Zhang, Y., Zhang, J., Chen, K., Shen, S., Hu, H., Chang, M., Chen, D., Wu, Y., Yuan, H., Wang, Y., 2023b. Engineering banana-peel-derived biochar for the rapid adsorption of tetracycline based on double chemical activation. Resour. Conserv. Recy. 190, 106821. https://doi.org/10.1016/j.resconrec.2022.106821.
    [90]
    Zhao, L., Zhao, Y.G., Jin, C., Yang, D., Zhang, Y., Progress, M., 2024. Removal of tetracycline by ultraviolet/sodium percarbonate (UV/SPC) advanced oxidation process in water. Environmental Research 247, 118260. https://doi.org/10.1016/j.envres.2024.118260.
    [91]
    Zhao, W., Chen, L., Jiang, Y., 2023. Preparation of activated carbon from sunflower straw through H3PO4 activation and its application for acid fuchsin dye adsorption. Water Sci. Eng. 16(2), 192-202. https://doi.org/10.1016/j.wse.2023.02.002.
    [92]
    Zhu, X., Liu, Y., Qian, F., Zhou, C., Zhang, S., Chen, J., 2014. Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresour. Technol. 154, 209-214. https://doi.org/10.1016/j.biortech.2013.12.019.
    [93]
    Zhu, Y.G., Johnson, T.A., Su, J.Q., Qiao, M., Guo, G.X., Stedtfeld, R.D., Hashsham, S.A., Tiedje, J.M., 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America 110(9), 3435-3440. 10.1073/pnas.1222743110.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return