Citation: | Himani Taneja, Shamas Tabraiz, Asma Ahmed. 2025: Optimising a novel biofilm-based process using Neurospora discreta for enhanced treatment of lignin-rich wastewater. Water Science and Engineering, 18(2): 141-150. doi: 10.1016/j.wse.2025.02.001 |
[1] |
Abramoff, M.D., Magalhaes, P.J., Ram, S.J., 2004. Image processing with ImageJ. Biophotonics International 11(7), 36.
|
[2] |
Ahmed, A., Narayanan, R.A., Veni, A.R., 2020. Influence of carbon source complexity on porosity, water retention and extracellular matrix composition of Neurospora discreta biofilms. Journal of Applied Microbiology 128(4), 1099-1108. https://doi.org/10.1111/jam.14539.
|
[3] |
Ascacio-Valdes, J.A., Buenrostro, J.J., De la Cruz, R., Sepulveda, L., Aguilera, A.F., Prado, A., Contreras, J.C., Rodriguez, R., Aguilar, C.N., 2014. Fungal biodegradation of pomegranate ellagitannins. Journal of Basic Microbiology 54(1), 28-34. https://doi.org/10.1002/jobm.201200278.
|
[4] |
Baldrian, P., 2006. Fungal laccases - occurrence and properties. FEMS Microbiology Reviews 30(2), 215-242. https://doi.org/10.1111/j.1574-4976.2005.00010.x.
|
[5] |
Bending, G.D., Read, D.J., 1997. Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycological Research 101(11), 1348-1354. https://doi.org/10.1017/S0953756297004140.
|
[6] |
Bourbonnais, R., Leech, D., Paice, M.G., 1998. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochimica et Biophysica Acta (BBA) - General Subjects 1379(2), 381-390. https://doi.org/10.1016/S0304-4165(97)00117-7.
|
[7] |
Christov, L., van Driessel, B., 2003. Waste water bioremediation in the pulp and paper industry. Indian Journal of Biotechnology 2(3), 444-450.
|
[8] |
Flemming, H.C., Wingender, J., 2010. The biofilm matrix. Nature Reviews Microbiology 8(9), 623-633. https://doi.org/10.1038/nrmicro2415.
|
[9] |
Garg, S.K., Modi, D.R., 1999. Decolorization of pulp-paper mill effluents by white-rot fungi. Critical Reviews in Biotechnology 19(2), 85-112. https://doi.org/10.1080/0738-859991229206.
|
[10] |
Gomes, I.B., Simoes, M., Simoes, L.C., 2020. Copper surfaces in biofilm control. Nanomaterials 10(12), 2491. https://doi.org/10.3390/nano10122491.
|
[11] |
Goncalves, C., Rodriguez-Jasso, R.M., Gomes, N., Teixeira, J.A., Belo, I., 2010. Adaptation of dinitrosalicylic acid method to microtiter plates. Analytical Methods 2, 2046-2048. https://doi.org/10.1039/C0AY00525H.
|
[12] |
Heinzkill, M., Bech, L., Halkier, T., Schneider, P., Anke, T., 1998. Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Applied and Environmental Microbiology 64, 1601-1606. https://doi.org/10.1128/aem.64.5.1601-1606.1998.
|
[13] |
Huang, L., Wang, M.J., 1995. Image thresholding by minimizing the measures of fuzziness. Pattern Recognition 28(1), 41-51. https://doi.org/10.1016/0031-3203(94)E0043-K.
|
[14] |
Hutchins, F.F., 1979. Toxicity of Pulp and Paper Mill Effluent: A Literature Review. U. S. Environmental Protection Agency, Washington DC.
|
[15] |
Knop, D., Yarden, O., Hadar, Y., 2015. Ligninolytic peroxidases in the genus Pleurotus: Divergence in activities, expression, and potential applications. Applied Microbiology and Biotechnology 99(3), 1025-1038. https://doi.org/10.1007/s00253-014-6256-8.
|
[16] |
Levin, L., Forchiassin, F., Ramos, A.M., 2002. Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii. Mycologia 94(3), 377-383. https://doi.org/10.1080/15572536.2003.11833202.
|
[17] |
Luke, A.K., Burton, S.G., 2001. A novel application for Neurospora crassa: Progress from batch culture to a membrane bioreactor for the bioremediation of phenols. Enzyme and Microbial Technology 29(6-7), 348-356. https://doi.org/10.1016/S0141-0229(01)00390-8.
|
[18] |
Mishra, S., Huang, Y., Li, J., Wu, X., Zhou, Z., Lei, Q., Bhatt, P., Chen, S., 2022. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere 294, 133609. https://doi.org/10.1016/j.chemosphere.2022.133609.
|
[19] |
Moshtaghioun, S.M., Dadkhah, M., Bahremandjo, K., Haghbeen, K., Aminzadeh, S., Legge, R.L., 2017. Optimization of simultaneous production of tyrosinase and laccase by Neurospora crassa. Biocatalysis and Biotransformation 35(1), 1-10. https://doi.org/10.1080/10242422.2016.1266617.
|
[20] |
Nandal, P., Ravella, S.R., Kuhad, R.C., 2013. Laccase production by Coriolopsis caperata RCK2011: Optimization under solid state fermentation by Taguchi DOE methodology. Scientific Reports 3(1), 1386. https://doi.org/10.1038/srep01386.
|
[21] |
Norgren, M., Edlund, H., 2014. Lignin: Recent advances and emerging applications. Current Opinion on Colloidal and Interface Science 19(5), 409-416. https://doi.org/10.1016/j.cocis.2014.08.004.
|
[22] |
Oikari, A.O., Nakari, T., 1982. Kraft pulp mill effluent components cause liver dysfunction in trout. Bulletin of Environmental Contamination and Toxicology 28, 266-270. https://doi.org/10.1007/BF01608505.
|
[23] |
Palmieri, G., Giardina, P., Marzullo, L., Desiderio, B., Nitti, G., Cannio, R., Sannia, G., 1993. Stability and activity of a phenol oxidase from the ligninolytic fungus Pleurotus ostreatus. Applied Microbiology and Biotechnology 39, 632-636. https://doi.org/10.1007/BF00205066.
|
[24] |
Pamidipati, S., Ahmed, A., 2017. Degradation of lignin in agricultural residues by locally isolated fungus Neurospora discreta. Applied Biochemistry and Biotechnology 181, 1561-1572. https://doi.org/10.1007/s12010-016-2302-6.
|
[25] |
Pamidipati, S., Ahmed, A., 2020. A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates. Folia Microbiologica 65, 431-437. https://doi.org/10.1007/s12223-019-00765-5.
|
[26] |
Papagianni, M., 2004. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances 22(3), 189-259. https://doi.org/10.1016/j.biotechadv.2003.09.005.
|
[27] |
Parveen, S., Ali, M.I., Aslam, M., Ali, I., Jamal, A., Al-Ansari, M.M., Al-Humaid, L., Urynowicz, M., Huang, Z., 2022. Optimizing biocatalytic potential of Dipodascus australiensis M-2 for degrading lignin under laboratory conditions. Microbiological Research 265, 127179. https://doi.org/10.1016/j.micres.2022.127179.
|
[28] |
Prasad, K.K., Mohan, S.V., Rao, R.S., Pati, B.R., Sarma, P.N., 2005. Laccase production by Pleurotus ostreatus 1804: Optimization of submerged culture conditions by Taguchi DOE methodology. Biochemical Engineering Journal 24(1), 17-26. https://doi.org/10.1016/j.bej.2005.01.019.
|
[29] |
Radjenovic, J., Matosic, M., Mijatovic, I., Petrovic, M., Barcelo, D., 2015. Membrane bioreactor (MBR) as an advanced wastewater treatment technology. In: Barcelo, D., Petrovic, M. (Eds.), Emerging Contaminants from Industrial and Municipal Waste. Springer, Berlin, Heidelberg, pp. 37-101. https://doi.org/10.1007/978-3-540-79210-9_2.
|
[30] |
Rajesh, J., Kavitha, S., Yukesh Kannah, R., Poornima Devi, T., Gunasekaran, M., Kim, S., Kumar, G., 2019. A review on biopolymer production via lignin valorization. Bioresource Technology 290, 121790. https://doi.org/10.1016/j.biortech.2019.121790.
|
[31] |
Ravichandran, A., Rao, R.G., Thammaiah, V., Gopinath, S.M., Sridhar, M., 2018. A novel versatile peroxidase from Lentinus squarrosulus towards enhanced delignification and in vitro digestibility of crop residues. BioResources 14(3), 5132-5149. https://doi.org/10.15376/biores.14.3.5132-5149.
|
[32] |
Rousk, J., Brookes, P.C., Baath, E., 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology 75(6), 1589-1596. https://doi.org/10.1128/AEM.02775-08.
|
[33] |
Saito, T., Hong, P., Kato, K., Okazaki, M., Inagaki, H., Maeda, S., Yokogawa, Y., 2003. Purification and characterization of an extracellular laccase of a fungus (family Chaetomiaceae) isolated from soil. Enzyme and Microbial Technology 33(4), 520-526. https://doi.org/10.1016/S0141-0229(03)00158-3.
|
[34] |
Singh, A.K., Bilal, M., Iqbal, H.M.N., Raj, A., 2021. Lignin peroxidase in focus for catalytic elimination of contaminants - A critical review on recent progress and perspectives. International Journal of Biological Macromolecules 177, 58-82. https://doi.org/10.1016/j.ijbiomac.2021.02.032.
|
[35] |
Sridhar, M., 2016. Versatile peroxidases: Super peroxidases with potential biotechnological applications - A mini review. Journal of Dairy, Veterinary & Animal Research 4(2), 277-280. https://doi.org/10.15406/jdvar.2016.04.00116.
|
[36] |
Srivastava, V.C., Mall, I.D., Mishra, I.M., 2005. Treatment of pulp and paper mill wastewaters with poly aluminium chloride and bagasse fly ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects 260(1), 17-28. https://doi.org/10.1016/j.colsurfa.2005.02.027.
|
[37] |
Sun, R., Tomkinson, J., Bolton, J., 1999. Separation and characterization of lignins from the black liquor of oil palm trunk fiber pulping. Separation Science and Technology 34(15), 3045-3058. https://doi.org/10.1081/SS-100100821.
|
[38] |
Taboada-Puig, R., Lu-Chau, T., Moreira, M.T., Feijoo, G., Martinez, M.J., Lema, J.M., 2011. A new strain of Bjerkandera sp. production, purification and characterization of versatile peroxidase. World Journal of Microbiology and Biotechnology 27(1), 115-122. https://doi.org/10.1007/s11274-010-0435-2.
|
[39] |
Tabraiz, S., Aiswarya, N.M., Taneja, H., Narayanan, R.A., Ahmed, A., 2022. Biofilm-based simultaneous nitrification, denitrification, and phosphorous uptake in wastewater by Neurospora discreta. Journal of Environmental Management 324, 116363. https://doi.org/10.1016/j.jenvman.2022.116363.
|
[40] |
Taneja, H., 2023. The Development and Optimisation of a Lab-Scale Process for Biological Treatment of Lignin-Rich Wastewater Using Biofilms Formed by Neurospora discreta. PhD Dissertation. Canterbury Christ Church University, Christ Church. https://repository.canterbury.ac.uk/item/978y9/the-development-and-optimisation-of-a-lab-scale-process-for-biological-treatment-of-lignin-rich-wastewater-using-biofilms-formed-by-nuerospora-discreta.
|
[41] |
Thompson, G., Swain, J., Kay, M., Forster, C.F., 2001. The treatment of pulp and paper mill effluent: A review. Bioresource Technology 77, 275-286. https://doi.org/10.1016/S0960-8524(00)00060-2.
|
[42] |
Vargas-Straube, M.J., Beard, S., Norambuena, R., Paradela, A., Vera, M., Jerez, C.A., 2020. High copper concentration reduces biofilm formation in Acidithiobacillus ferrooxidans by decreasing production of extracellular polymeric substances and its adherence to elemental sulfur. Journal of Proteomics 225, 103874. https://doi.org/10.1016/j.jprot.2020.103874.
|
[43] |
Vashi, H., Iorhemen, O.T., Tay, J.H., 2018. Degradation of industrial tannin and lignin from pulp mill effluent by aerobic granular sludge technology. Journal of Water Process Engineering 26, 38-45. https://doi.org/10.1016/j.jwpe.2018.09.002.
|
[44] |
Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A.P., Narasimha, G., 2014. Fungal laccases and their applications in bioremediation. Enzyme Research 2014, 163242. https://doi.org/10.1155/2014/163242.
|
[45] |
Vogel, H.J., 1964. Distribution of lysine pathways among fungi: Evolutionary implications. The American Naturalist 98(903), 435-446. https://doi.org/10.1086/282338.
|
[46] |
Yadav, S., Tripathi, S., Purchase, D., Chandra, R., 2023. Development of a biofilm-forming bacterial consortium and quorum sensing molecules for the degradation of lignin-containing organic pollutants. Environmental Research 226, 115618. https://doi.org/10.1016/j.envres.2023.115618.
|
[47] |
Yoruk, R., Marshall, M.R., 2003. Physicochemical properties and function of plant polyphenol oxidase polyphenol oxidase: A review. Journal of Food Biochemistry 27, 361-422. https://doi.org/10.1111/j.1745-4514.2003.tb00289.x.
|
[48] |
Zheng, Y., Song, H., Chen, Q., Hou, Y., Zhang, X., Han, S., 2023. Comparing biofilm reactors inoculated with Shewanella for decolorization of Reactive Black 5 using different carrier materials. Biotechnology Journal 19(1), 2300299. https://doi.org/10.1002/biot.202300299.
|