Citation: | Hai-xin Shang, Jun-qiang Xia, Chun-hong Hu, Mei-rong Zhou, Shan-shan Deng. 2025: Quantification of backwater effect in Jingjiang Reach due to confluence with Dongting Lake using a machine learning model. Water Science and Engineering, 18(2): 187-199. doi: 10.1016/j.wse.2025.02.002 |
[1] |
Benda, L., Andras, K., Miller, D., Bigelow, P., 2004. Confluence effects in rivers: Interactions of basin scale, network geometry, and disturbance regimes. Water Resour. Res. 40, W05402. https://doi.org/10.1029/2003WR002583.
|
[2] |
Best, J.L., Reid, I., 1984. Separation zone at open-channel junctions. J. Hydraul. Eng. 110(11), 1588-1594. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1588).
|
[3] |
Boyer, C., Roy, A.G., Best, J.L., 2006. Dynamics of a river channel confluence with discordant beds: Flow turbulence, bed load sediment transport, and bed morphology. J. Geophys. Res. 111, F04007. https://doi.org/10.1029/2005JF000458.
|
[4] |
Breiman, 2001. Random forests. Mach. Learn. 45(1), 5-32. https://doi.org/10.1023/A:1010933404324.
|
[5] |
Brooke, S., Chadwick, A.J., Silvestre, J., Lamb, M.P., Edmonds, D.A., Ganti, V., 2022. Where rivers jump course. Science 376(6596), 987-990. https://doi.org/10.1126/science.abm1215.
|
[6] |
Castelltort, F.X., Blade, E., Balasch, J.C., Ribe, M., 2020. The backwater effect as a tool to assess formative long-term flood regimes. Quat. Int. 538, 29-43. https://doi.org/10.1016/j.quaint.2020.01.012.
|
[7] |
Follett, E., Schalko, I., Nepf, H., 2020. Momentum and energy predict the backwater rise generated by a large wood jam. Geophys. Res. Lett. 47, e2020GL089346. https://doi.org/10.1029/2020GL089346.
|
[8] |
Guillen-Ludena, S., Franca, M.J., Cardoso, A.H., Schleiss, A.J., 2016. Evolution of the hydromorphodynamics of mountain river confluences for varying discharge ratios and junction angles. Geomorphology 255, 1-15. https://doi.org/10.1016/j.geomorph.2015.12.006.
|
[9] |
Hipple, J.D., Drazkowski, B.,Thorsell, P.M., 2004. Development in the Upper Mississippi Basin:10 years after the Great flood of 1993. Landsc. Urban Plann. 72(2005), 313-323. https://doi.org/10.1016/j.landurbplan.2004.03.012.
|
[10] |
Hu, R., Fang, F., Pain, C.C., Navon, I.M., 2019. Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method. J. Hydrol. 575, 911-920. https://doi.org/10.1016/j.jhydrol.2019.05.087.
|
[11] |
Li, K., Tang, H.W., Yuan, S.Y., Xiao, Y., Xu, L., Huang, S.J., Rennie, C.D., Gualtieri, C., 2022. A field study of near-junction-apex flow at a large river confluence and its response to the effects of floodplain flow. J. Hydrol. 610, 127983. https://doi.org/10.1016/j.jhydrol.2022.127983.
|
[12] |
Liao, M.C., Barros, A.P., 2023. Toward optimal rainfall for flood prediction in headwater basins-orographic QPE error modeling using machine learning. Water Resour. Res. 59, e2023WR034456. https://doi.org/10.1029/2023WR034456.
|
[13] |
Liro, M., Ruiz-Villanueva, V., Mikus, P., Wyzga, B., Castellet, E.B., 2020. Changes in the hydrodynamics of a mountain river induced by dam reservoir backwater. Sci. Total Environ. 744, 140555. https://doi.org/10.1016/j.scitotenv.2020.140555.
|
[14] |
Liu, M.W., Lu, H.S., Lindenschmidt, K.E., Xu, K.L., Zhu, Y.H., He, C.L., Wang, X.Y., Xie, B.Q., 2022. Hazard assessment and prediction of ice-jam flooding for a river regulated by reservoirs using an integrated probabilistic modelling approach. J. Hydrol. 615, 128611. https://doi.org/10.1016/j.jhydrol.2022.128611.
|
[15] |
Ma, X., Hu, H., Ren, Y.F., 2023. A hybrid deep learning model based on feature capture of water level influencing factors and prediction error correction for water level prediction of cascade hydropower stations under multiple time scales. J. Hydrol. 617, 129004. https://doi.org/10.1016/j.jhydrol.2022.129044.
|
[16] |
Mansanarez, V., Le Coz, J., Renard, B., Lang, M., Pierrefeu, G., Vauchel, P., 2018. Bayesian analysis of stage-fall-discharge rating curves and their uncertainties. Water Resour. Res. 52(9), 7424-7443. https://doi.org/10.1002/2016WR018916.
|
[17] |
Mateo, C.M., Hanasaki, N., Komori, D., Tanaka, K., Kiguchi, M., Champathong, A., Sukhapunnaphan, T., Yamazaki, D., Oki, T., 2014. Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models. Water Resour. Res. 50(9), 7245-7266. https://doi.org/10.1002/2013WR014845.
|
[18] |
Petersen-Overleir, A., Reitan, T., 2009. Bayesian analysis of stage-fall-discharge models for gauging stations affected by variable backwater. Hydrol. Process. 23(21), 3057-3074. https://doi.org/10.1002/hyp.7417.
|
[19] |
Pham, B.T., Luu, C., Phong, T.V., Trinh, P.T., Shirzadi, A., Renoud, S., Asadi, S., Le, H.V., von Meding, J., Clague, J.J., 2021. Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling? J. Hydrol. 592, 125615. https://doi.org/10.1016/j.jhydrol.2020.125615.
|
[20] |
Piasecki, A., Jurasz, J., Skowron, R., 2017. Forecasting surface water level fluctuations of Lake Serwy (northeastern Poland) by artificial neural networks and multiple linear regression. J. Environ. Eng. Landsc. Manag. 25(4), 379-388. https://doi.org/10.3846/16486897.2017.1303498.
|
[21] |
Pickering, C., Ford, W.I., 2021. Effect of watershed disturbance and river-tributary confluences on watershed sedimentation dynamics in the Western Allegheny Plateau. J. Hydrol. 602, 126784. https://doi.org/10.1016/j.jhydrol.2021.126784.
|
[22] |
Ragno, N., Redolfi, M., Tubino, M., 2021. Coupled morphodynamics of river bifurcations and confluences. Water Resour. Res. 57(1), e2020WR028515. https://doi.org/10.1029/2020WR028515.
|
[23] |
Schmidt, A.R., Yen, B.C., 2008. Theoretical development of stage-discharge ratings for subcritical open-channel flows. J. Hydraul. Eng. 134(9), 1245-1256. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1245).
|
[24] |
Seckin, G., Akoz, M.S., Cobaner, M., Haktanir, T., 2009. Application of ANN techniques for estimating backwater through bridge constrictions in Mississippi River Basin. Adv. Eng. Software 40(10), 1039-1046. https://doi.org/10.1016/j.advengsoft.2009.03.002.
|
[25] |
Shariee, A.M.S.A., Mohamad, I.N., Lee, W.K., 2020. Backwater effect of tidal water level fluctuation and riverine discharge in an idealized river. Earth Env. Sci. 498, 012055. https://doi.org/10.1088/1755-1315/498/1/012055.
|
[26] |
Shi, L., Sun, J., Lin, B., Liu, Z.W., Zuo, X.Y., 2022. Hydro-thermodynamic processes at a large confluence under reservoir regulation. Water Resour. Res. 58(12), e2022WR033315. https://doi.org/10.1029/2022WR033315.
|
[27] |
Wu, R.B., Yang, J.C., 2008. An analytical method of stage-fall-discharge rating. Hydrol. Process. 22(16), 2959-2973. https://doi.org/10.1002/hyp.6867.
|
[28] |
Xia, J., Chen, J., 2021. A new era of flood control strategies from the perspective of managing the 2020 Yangtze River flood. Sci. China Earth Sci. 64(1), 1-9. https://doi.org/10.1007/s11430-020-9699-8.
|
[29] |
Yang, C.G., Li, S.X., Dong, B.J., Yuan, J., 2021. Study on the mechanism of lower water level in middle and lower reaches of the Yangtze River after impounding of the Three Gorges Reservoir. J. Sediment. Res. 46(5), 34-40 (in Chinese). https://doi.org/10.16239/j.cnki.0468-155x.2021.05.006.
|
[30] |
Yen, B.C., Gonzalez-Castro, J.A., 2000. Open-channel capacity determination using hydraulic performance graph. J. Hydraul. Eng. 126(2), 112-122. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:2(112).
|
[31] |
Yin, Z.Y., Chai, Y.F., 2022. Characteristics and mechanisms of moderate water level of Yichang-Luoshan section in middle reaches of Yangtze River. Water Resour. Power 40(10), 31-34 (in Chinese). https://doi.org/10.20040/j.cnki.1000-7709.2022.20220313.
|
[32] |
Yuan, S.Y., Tang, H.W., Xiao, Y., Qiu, X.H., Xia, Y., 2018. Water flow and sediment transport at open-channel confluences: An experimental study. J. Hydraul. Res. 56(3), 333-350. https://doi.org/10.1080/00221686.2017.1354932.
|
[33] |
Yuan, S.Y., Tang, H.W., Li, K., Xu, L., Xiao, Y., Gualtieri, C., Rennie, C., Melville, B., 2021. Hydrodynamics, sediment transport and morphological features at the confluence between the Yangtze River and the Poyang Lake. Water Resour. Res. 57(3), e2020WR028284. https://doi.org/10.1029/2020WR028284.
|
[34] |
Zhou, M.R., Xia, J.Q., Shi, X., Deng, S.S., Zhang, X.N., 2023. Hydrologic and geomorphic effects on the reduction of channel discharge capacity in the Middle Yangtze River. Sci. Total Environ. 866, 161279. https://doi.org/10.1016/j.scitotenv.2022.161279.
|
[35] |
Zhu, L.L., Xu, Q.X, Dai, M.L., 2016. Runoff diverted from the Jingjiang reach to the Dongting Lake and the effect of three Gorges reservoir. Adv. Water Sci. 27(6), 822-831 (in Chinese). https://doi.org/10.14042/j.cnki.32.1309.2016.06.004.
|