Volume 18 Issue 4
Dec.  2025
Turn off MathJax
Article Contents
Zheng Wu, Yuan-yuan Mao, Lin Lan, Peng Zhang, Hua-yang Cai, Yi-han Zhao, Zhi-shi Lu. 2025: Analytical investigation of tidal dynamics in a micro-tidal estuary: A case study of Yongjiang Estuary, China. Water Science and Engineering, 18(4): 444-453. doi: 10.1016/j.wse.2025.06.002
Citation: Zheng Wu, Yuan-yuan Mao, Lin Lan, Peng Zhang, Hua-yang Cai, Yi-han Zhao, Zhi-shi Lu. 2025: Analytical investigation of tidal dynamics in a micro-tidal estuary: A case study of Yongjiang Estuary, China. Water Science and Engineering, 18(4): 444-453. doi: 10.1016/j.wse.2025.06.002

Analytical investigation of tidal dynamics in a micro-tidal estuary: A case study of Yongjiang Estuary, China

doi: 10.1016/j.wse.2025.06.002
Funds:

This work was supported by the Jiangsu Provincial Young Scientific and Technological Talent Support Program (Grant No. JSTJ-2024-184), the National Natural Science Foundation of China (Grant No. 52279080), and the Jiangsu Provincial Water Resources Science and Technology Project (Grant No. 2022003).

  • Received Date: 2024-12-20
  • Accepted Date: 2025-05-14
  • Available Online: 2025-12-03
  • Understanding the processes and dynamics of tidal wave propagation in estuaries is critical for assessing the impacts of natural processes and human interventions on estuarine systems. However, current knowledge of tidal dynamics in micro-tidal estuaries and their variability across various timescales remains limited. This study used an analytical framework and field observations to investigate the fundamental physical processes and mechanisms governing tidal wave propagation in the Yongjiang Estuary, a micro-tidal estuary on the eastern coast of China. The analytically computed tidal amplitude and wave propagation timing aligned with observed data. Significant wet/dry and spring/neap variations in tidal wave properties were identified, primarily influenced by the interplay between channel convergence and bottom friction. Given the high siltation rates in the Yongjiang Estuary, analytical simulations suggested that human-induced dredging enhances tidal dynamics, while channel bed siltation weakens hydrodynamic processes, potentially exacerbating local sedimentation. The findings of this study provide valuable insights for estuarine management and establish a foundation for future research on sediment dynamics in the Yongjiang Estuary.

     

  • loading
  • [1]
    Cai, H., Savenije, H.H.G., Toffolon, M., 2012. A new analytical framework for assessing the effect of sea-level rise and dredging on tidal damping in estuaries. Journal of Geophysical Research Oceans 117(C9), C09023. https://doi.org/10.1029/2012JC008000.
    [2]
    Cai, H., Savenije, H.H.G., Jiang, C., 2014a. Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations. Hydrology and Earth System Sciences 18(10), 4153-4168. https://doi.org/10.5194/hess-18-4153-2014.
    [3]
    Cai, H., Savenije, H.H.G., Toffolon, M., 2014b. Linking the river to the estuary: Influence of river discharge on tidal damping. Hydrology and Earth System Sciences 18(1), 287-304. https://doi.org/10.5194/hess-18-287-2014.
    [4]
    Cai, H., Toffolon, M., Savenije, H.H.G., 2016. An analytical approach to determining resonance in semi-closed convergent tidal channels. Coastal Engineering Journal 58(3), 1650009. https://doi.org/10.1142/S0578563416500091.
    [5]
    Cai, H., Toffolon, M., Savenije, H.H.G., Yang, Q., Garel, E., 2018. Frictional interactions between tidal constituents in tide-dominated estuaries. Ocean Science 14(4), 769-782. https://doi.org/10.5194/os-14-769-2018.
    [6]
    Chant, R.J., Sommerfeld, C.K., Talke, S.A., 2018. Impact of channel deepening on tidal and gravitational circulation in a highly engineered estuarine basin. Estuaries and Coasts 41, 1587-1600.
    [7]
    Chen, J., Tang, H., Xiao Y., Ji, M., 2013. Hydrodynamic characteristics and sediment transport of a tidal river under influence of wading engineering groups. China Ocean Engineering 27(6), 829-842. https://doi.org/10.1007/s13344-013-0068-y.
    [8]
    Doodson, A.T., 1921. The harmonic development of the tide-generating potential. Proceedings of the Royal Society of London Series A100, 306-328. https://doi.org/10.1098/rspa.1921.0088.
    [9]
    Du, J., Shen, J., Zhang, Y.J., Ye, F., Liu, Z., Wang, Z., Wang, Y., Yu, X., Sisson, M., Wang, H., 2018. Tidal response to sea-level rise in different types of estuaries: The importance of length, bathymetry, and geometry. Geophysical Research Letters 45(1), 227-235. https://doi.org/10.1002/2017GL075963.
    [10]
    Fotsi, Y.F., Brenon, I., Pouvreau, N., Ferret, Y., Latapy, A., Onguene, R., Jombe, D., Etame, J., 2023. Exploring tidal dynamics in the Wouri Estuary, Cameroon. Continental Shelf Research 259(15), 104982. https://doi.org/10.1016/j.csr.2023.104982.
    [11]
    Garel, E., Cai, H., 2018. Effects of tidal-forcing variations on tidal properties along a narrow convergent estuary. Estuaries and Coasts 41(7), 1924-1942. https://doi.org/10.1007/s12237-018-0410-y.
    [12]
    Garel, E., Zhang, P., Cai, H., 2021. Dynamics of fortnightly water level variations along a tide-dominated estuary with negligible river discharge. Ocean Science 17(6), 1605-1621. https://doi.org/10.5194/os-17-1605-2021.
    [13]
    Godin, G., 1999. The propagation of tides up rivers with special considerations on the upper Saint Lawrence River. Estuarine Coastal and Shelf Science 48(48), 307-324. https://doi.org/10.1006/ecss.1998.0422.
    [14]
    Hir, P.L., Ficht, A., Jacinto, R.S., Lesueur, P., Dupont, J.P., Lafite, R., Brenon, I., Thouvenin, B., Cugier, P., 2001. Fine sediment transport and accumulations at the mouth of the Seine Estuary (France). Estuaries 24(6), 950-963. https://doi.org/10.2307/1353009.
    [15]
    Jay, D.A., 1991. Green's law revisited: tidal long-wave propagation in channels with strong topography. Journal of Geophysical Research Oceans 96(C11), 20585-20598. https://doi.org/10.1029/91JC01633.
    [16]
    Jiang, C., Pan. S.Q., Chen, S.L., 2017. Recent morphological changes of the Yellow River (Huanghe) submerged delta: Causes and environmental implications. Geomorphology 293, 93-107. https://doi.org/10.1016/j.geomorph.2017.04.036.
    [17]
    Khojasteh, D., Hottinger, S., Felder, S., De Cesare, G., Heimhuber, V., Hanslow, D.J., Glamore, W., 2020. Estuarine tidal response to sea level rise: The significance of entrance restriction. Estuarine, Coastal and Shelf Science 244, 106941. https://doi.org/10.1016/j.ecss.2020.106941.
    [18]
    Khojasteh, D., Glamore, W., Heimhuber, V., Felder, S., 2021. Sea level rise impacts on estuarine dynamics: A review. Science of The Total Environment 780, 146470. https://doi.org/10.1016/j.scitotenv.2021.146470.
    [19]
    Khojasteh, D., Lewis, M., Tavakoli, S., Farzadkhoo, M., Felder, S., Iglesias, G., Glamore, W., 2022. Sea level rise will change estuarine tidal energy: A review. Renewable and Sustainable Energy Reviews 156, 111855. https://doi.org/10.1016/j.scitotenv.2021.146470.
    [20]
    Kim, S.C., Friedrichs, C.T., Maa, P.Y., Wright, L.D., 2000. Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data. Journal of Hydraulic Engineering 126(6), 399-406. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:6(399).
    [21]
    Liang, D.F., Xia, J.Q., Falconer, R.A., Zhang, J.X., 2014. Study on tidal resonance in Severn Estuary and Bristol Channel. Coastal Engineering Journal 56(1), 107-1235. https://doi.org/10.1142/S0578563414500028.
    [22]
    Maren, D.S.V., Oost, A.P., Wang, Z.B., Vos, P.C., 2016. The effect of land reclamations and sediment extraction on the suspended sediment concentration in the Ems Estuary. Marine Geology 376, 147-157. https://doi.org/10.1016/j.margeo.2016.03.007.
    [23]
    Park, M.J., Savenije, H.H.G., Cai, H., Jee, E.K., Kim, N.H., 2017. Progressive change of tidal wave characteristics from the eastern Yellow Sea to the Asan Bay, a strongly convergent bay in the west coast of Korea. Ocean Dynamics 67, 1137-1150. https://doi.org/10.1007/s10236-017-1078-8.
    [24]
    Ralston, D.K., Talke, S.A., Geyer, W.R., Al-Zubadaei, H., Sommerfield, C.K., 2019. Bigger tides, less flooding: Effects of dredging on water level in the Hudson River estuary. Journal of Geophysical Research Oceans 124(1), 196-211. https://doi.org/10.1029/2018JC014313.
    [25]
    Rijn, L.C.V., 2011. Analytical and numerical analysis of tides and salinities in estuaries; Part I: Tidal wave propagation in convergent estuaries. Ocean Dynamics 61(11), 1719-1741. https://doi.org/10.1175/1520-0485(2003)033<2738:RBTDAB>2.0.CO;2.
    [26]
    Savenije, H.H.G., Veling, E.J.M., 2005. Relation between tidal damping and wave celerity in estuaries. Journal of Geophysical Research Oceans 110(C4), C04007. https://doi.org/10.1029/2004JC002278.
    [27]
    Savenije, H.H.G., Toffolon, M., Haas, J., Veling, E.J.M., 2008. Analytical description of tidal dynamics in convergent estuaries. Journal of Geophysical Research Oceans 113(C10), C10025. https://doi.org/10.1029/2007JC004408.
    [28]
    Schuttelaars, H.M., Jonge, V.N.D., Chernetsky, A., 2013. Improving the predictive power when modelling physical effects of human interventions in estuarine systems. Ocean and Coastal Management 79(79), 70-82. https://doi.org/10.1016/j.ocecoaman.2012.05.009.
    [29]
    Shi, J.Z., 2010. Tidal resuspension and transport processes of fine sediment within the river plume in the partially-mixed Changjiang River estuary, China: A personal perspective. Geomorphology 121(3-4), 133-151. https://doi.org/10.1016/j.geomorph.2010.04.021.
    [30]
    Tao, J., Zhu, R., 2022. Exploring the three-dimensional flow-sediment dynamics and trapping mechanisms in a curved estuary: The role of salinity and circulation. Frontiers in Marine Science 9, 976332. https://doi.org/10.3389/fmars.2022.976332.
    [31]
    Tazkia, A., Krien, Y., Durand, F., Testut, L., Islam, A.S., Papa, F., Bertin, X., 2017. Seasonal modulation of M2 tide in the Northern Bay of Bengal. Continental Shelf Research 137, 154-162. https://doi.org/10.1016/j.csr.2016.12.008.
    [32]
    Toffolon, M., Savenije, H.H.G., 2011. Revisiting linearized one-dimensional tidal propagation. Journal of Geophysical Research Oceans 116(C7), C07007. https://doi.org/10.1029/2010JC006616.
    [33]
    Wang, H., Zhang, P., Hu, S., Cai, H., Yang, Q., 2020. Tidal regime shift in Lingdingyang Bay, the Pearl River Delta: An identification and assessment of driving factors. Hydrological Processes 34(13), 2878-2894. https://doi.org/10.1002/hyp.13773.
    [34]
    Winterwerp, J.C., Wang, Z.B., Braeckel, A.V., Holland, G.V., Kosters, F., 2013. Man-induced regime shifts in small estuaries - II: A comparison of rivers. Ocean Dynamics 63(11-12), 1293-1306. https://doi.org/10.1007/s10236-013-0663-8.
    [35]
    Xiao, Y., Wu, Z., Cai, H., Tang, H., 2018. Suspended sediment dynamics in a well-mixed estuary: The role of high suspended sediment concentration (SSC) from the adjacent sea area. Estuarine Coastal and Shelf Science 209, 191-204. https://doi.org/10.1016/j.ecss.2018.05.018.
    [36]
    Yu, Q., Wang, Y., Gao, J., Gao, S., Flemming, B., 2014. Turbidity maximum formation in a well-mixed macrotidal estuary: The role of tidal pumping. Journal of Geophysical Research Oceans 119(11), 7705-7724. https://doi.org/10.1002/2014JC010228.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (2) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return