Volume 18 Issue 4
Dec.  2025
Turn off MathJax
Article Contents
Suhaib S. Salih, Muayad A. Shihab, Mohammed Kadhom, Noor Albayati, Tushar K. Ghosh. 2025: Simultaneous removal of organic and inorganic pollutants onto chitosan-coated pumice adsorbent. Water Science and Engineering, 18(4): 486-495. doi: 10.1016/j.wse.2025.07.002
Citation: Suhaib S. Salih, Muayad A. Shihab, Mohammed Kadhom, Noor Albayati, Tushar K. Ghosh. 2025: Simultaneous removal of organic and inorganic pollutants onto chitosan-coated pumice adsorbent. Water Science and Engineering, 18(4): 486-495. doi: 10.1016/j.wse.2025.07.002

Simultaneous removal of organic and inorganic pollutants onto chitosan-coated pumice adsorbent

doi: 10.1016/j.wse.2025.07.002
  • Received Date: 2025-02-23
  • Accepted Date: 2025-06-30
  • Available Online: 2025-12-03
  • The development of low-cost, efficient, and environmentally friendly adsorbents capable of simultaneously removing both heavy metals and synthetic dyes from wastewater remains a critical challenge in environmental remediation. In this study, a novel chitosan/pumice (CS/PM) composite was synthesized and evaluated for its multifunctional adsorption performance toward four common and toxic pollutants: lead (Pb(II)), cadmium (Cd(II)), methylene blue (MB), and Congo red (CR). Characterization confirmed the successful integration of chitosan with pumice, resulting in reduced crystallinity, enhanced thermal stability, and active functional groups involved in adsorption. Adsorption experiments demonstrated optimal pollutant removal at a pH value of 6, with the composite exhibiting high affinity for all tested contaminants. The adsorption kinetics followed a pseudo-second-order model, indicating that chemical interactions predominantly govern the adsorption process. Furthermore, the adsorption isotherms closely fit the Langmuir model, followed by the Sips model, suggesting monolayer adsorption on a homogeneous surface with potential heterogeneous interactions. The maximum adsorption capacities of CS/PM, calculated from the Langmuir model, were 150.60 mg/g, 123.14 mg/g, 135.20 mg/g, and 120.33 mg/g for Pb(II), Cd(II), MB, and CR, respectively. This study introduces a straightforward approach for designing porous composite materials with high adsorption capacities, offering promising applications in environmental remediation.

     

  • loading
  • [1]
    Ahmad, R., Ansari, K., 2021. Comparative study for adsorption of Congo red and methylene blue dye on chitosan modified hybrid nanocomposite. Process Biochem. 108, 90-102. https://doi.org/10.1016/j.procbio.2021.05.013.
    [2]
    Ahmed, S.H., Abduljabbar, R.A., 2023. Removal of methylene blue dye from aqueous solutions using Cordia myxa fruits as a low-cost Aadsorbent. Tikrit J. Eng. Sci. 30(3), 90-99.
    [3]
    Alhamd, S.J., Manteghian, M., Abdulhameed, M.A., Ibrahim, T.A., Jarmondi, K.D., 2024. Efficient removal of heavy metals from crude oil using high surface area adsorbent media: Vanadium as a case study. Tikrit J. Eng. Sci. 31(2), 1-9.
    [4]
    Ali, A.W., Jassim, N.J., Fares, M.N., 2025. Preparation and characterization of MgO/Fe3O4 activated carbon with statistically optimization for oil uptake from emulsion. Tikrit J. Eng. Sci. 32(1), 1-13.
    [5]
    Ali, H., Tiama, T.M., Ismail, A.M., 2021. New and efficient NiO/chitosan/polyvinyl alcohol nanocomposites as antibacterial and dye adsorptive films. Int. J. Biol. Macromol. 186, 278-288. https://doi.org/10.1016/j.ijbiomac.2021.07.055.
    [6]
    Alqarni, A.S., 2022. A comprehensive review on properties of sustainable concrete using volcanic pumice powder ash as a supplementary cementitious material. Constr. Build. Mater. 323, 126533. https://doi.org/10.1016/j.conbuildmat.2022.126533.
    [7]
    Azeez, N.R., Salih, S.S., Kadhom, M., Mohammed, H.N., Ghosh, T.K., 2024. Enhanced termination of zinc and cadmium ions from wastewater employing plain and chitosan-modified mxenes: Synthesis, characterization, and adsorption performance. Green Chem. Eng. 5(3), 339-347. https://doi.org/10.1016/j.gce.2023.08.003.
    [8]
    Bai, B., Bai, F., Li, X., Nie, Q., Jia, X., Wu, H., 2022. The remediation efficiency of heavy metal pollutants in water by industrial red mud particle waste. Environmental Technology & Innovation 28, 102944. https://doi.org/10.1016/j.eti.2022.102944.
    [9]
    Balakrishnan, A., Appunni, S., Chinthala, M., Jacob, M.M., Vo, D.V.N., Reddy, S.S., Kunnel, E.S., 2023. Chitosan-based beads as sustainable adsorbents for wastewater remediation: A review. Environ. Chem. Lett. 21(3), 1881-1905. https://doi.org/10.1007/s10311-023-01563-9.
    [10]
    Chen, K., Dong, H., Ni, Z., Zhao, Y., Qian, Y., Wang, Y., Xu, K., 2024. Selective extraction of anionic and cationic dyes using tailored hydrophobic deep eutectic solvents. Talanta. 268, 125312. https://doi.org/10.1016/j.talanta.2023.125312.
    [11]
    Daud, N.F.M., 2006. Batch adsorption of manganese from palm oil mill effluent onto activated cow bone powder. ARPN Journal of Engineering and Applied Sciences 11(4), 2627-2631.
    [12]
    Ferreira, D.C.M., Dos Santos, T.C., dos Reis Coimbra, J.S., de Oliveira, E.B., 2023. Chitosan/carboxymethylcellulose polyelectrolyte complexes (PECs) are an effective material for dye and heavy metal adsorption from water. Carbohydr. Polym. 315, 120977. https://doi.org/10.1016/j.carbpol.2023.120977.
    [13]
    Goswami, R., Mishra, A., Mishra, P.K., Rajput, A., 2024. Linear and nonlinear regression modelling of industrial dye adsorption using nanocellulose@ chitosan nanocomposite beads. Int. J. Biol. Macromol. 274, 133512. https://doi.org/10.1016/j.ijbiomac.2024.133512.
    [14]
    Hassan, A., Das, N., 2024. Triptycene-based cationic porous organic polymer for the swift and effective removal of organic and inorganic anionic water pollutants. ACS Appl. Eng. Mater. 2(1), 56-66. https://doi.org/10.1021/acsaenm.3c00562.
    [15]
    Ibrahim, A.K., Ahmed, S.H., Abduljabbar, R.A., 2024. Adsorption of Congo red dye from aqueous solutions using an eco-friendly adsorbent derived from buckthorn fruits. Tikrit J. Eng. Sci. 31(1), 182-192.
    [16]
    Ijaz, I., Bukhari, A., Gilani, E., Nazir, A., Zain, H., Bukhari, A., Shaheen, A., Hussain, S., Imtiaz, A., 2023. Functionalization of chitosan biopolymer using two-dimensional metal-organic frameworks and MXene for rapid, efficient, and selective removal of lead(II) and methyl blue from wastewater. Process Biochem. 129, 257-267. https://doi.org/10.1016/j.procbio.2023.03.029.
    [17]
    Kim, U.J., Lee, Y.R., Kang, T.H., Choi, J.W., Kimura, S., Wada, M., 2017. Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents. Carbohydr. Polym. 163, 34-42. https://doi.org/10.1016/j.carbpol.2017.01.052.
    [18]
    Lee, H.S., Shin, H.S., 2021. Competitive adsorption of heavy metals onto modified biochars: Comparison of biochar properties and modification methods. J. Environ. Manage. 299, 113651. https://doi.org/10.1016/j.jenvman.2021.113651.
    [19]
    Li, S., Wang, C., Liu, Y., Liu, Y., Cai, M., Zhao, W., Duan, X., 2023. S-scheme MIL-101 (Fe) octahedrons modified Bi2WO6 microspheres for photocatalytic decontamination of Cr(VI) and tetracycline hydrochloride: Synergistic insights, reaction pathways, and toxicity analysis. Chem. Eng. J. 455, 140943. https://doi.org/10.1016/j.cej.2022.140943.
    [20]
    Mahdy, S.A., Al-Naseri, H., 2024. Effect of magnesium oxide nanoparticles (MgO) on wastewater treatment and electric current generation using microbial fuel cell technology. Tikrit J. Eng. Sci. 31(2), 219-228.
    [21]
    Mouhamadou, S., Dalhatou, S., Obada, D.O., Fryda, L., Mahieu, A., Bonnet, P., Caperaa, C., Kane, A., Massai, H., Zeghioud, H., 2023. Synthesis of Piliostigma reticulatum decorated TiO2 based composite and its application towards Cr(VI) adsorption and bromophenol blue degradation: Nonlinear kinetics, equilibrium modelling and optimisation photocatalytic parameters. J. Environ. Chem. Eng. 11(1), 109273. https://doi.org/10.1016/j.jece.2023.109273.
    [22]
    Mubarak, A.S., Salih, S.S., Kadhom, M., Ghosh, T.K., 2025a. Competitive and non-competitive adsorption of Cd(II) and Pb(II) from aqueous solution using Zr-BADS metal organic frameworks. Sustainable Chemistry for the Environment 9, 100231. https://doi.org/10.1016/j.scenv.2025.100231.
    [23]
    Mubarak, A.S., Salih, S.S., Kadhom, M., Ghosh, T.K., 2025b. Removal of heavy metals from contaminated water using Metal-Organic Frameworks (MOFs): A review on techniques and applications. Mater. Sci. Eng. B. 315, 118105. https://doi.org/10.1016/j.mseb.2025.118105.
    [24]
    Oyekanmi, A.A., Katibi, K.K., Omar, R.C., Ahmad, A., Elbidi, M., Alshammari, M.B., Shitu, I.G., 2024. A novel oil palm frond magnetic biochar for the efficient adsorption of crystal violet and sunset yellow dyes from aqueous solution: Synthesis, kinetics, isotherm, mechanism and reusability studies. Appl. Water Sci. 14(2), 13. https://doi.org/10.1007/s13201-023-02060-8.
    [25]
    Oyekanmi, A.A., Royahu, C.O., Ahmad, A., Dele-Afolabi, T.T., Alshammari, M.B., Imteaz, M., 2024. A novel oyster shell biocomposite for the efficient adsorptive removal of cadmium and lead from aqueous solution: Synthesis, process optimization, modelling and mechanism studies. PLoS One 19(2), e0294286. https://doi.org/10.1371/journal.pone.0294286.
    [26]
    Paiman, S.H., Rahman, M.A., Uchikoshi, T., Abdullah, N., Othman, M.H.D., Jaafar, J., Abas, K.H., Ismail, A.F., 2020. Functionalization effect of Fe-type MOF for methylene blue adsorption. J. Saudi Chem. Soc. 24(11), 896-905. https://doi.org/10.1016/j.jscs.2020.09.006.
    [27]
    Podgorbunskikh, E., Kuskov, T., Rychkov, D., Lomovskii, O., Bychkov, A., 2022. Mechanical amorphization of chitosan with different molecular weights. Polymers 14(20), 4438. https://doi.org/10.3390/polym14204438.
    [28]
    Popoola, L.T., 2019. Characterization and adsorptive behaviour of snail shell-rice husk (SS-RH) calcined particles (CPs) towards cationic dye. Heliyon 5(1), e01153. https://doi.org/10.1016/j.heliyon.2019.e01153.
    [29]
    Prihatdini, R.W., Suratman, A., Siswanta, D., 2023. Linear and nonlinear modeling of kinetics and isotherm of malachite green dye adsorption to trimellitic-modified pineapple peel. Materials Today: Proceedings 88, 33-40. https://doi.org/10.1016/j.matpr.2023.07.108.
    [30]
    Qureshi, T.A., Gadhi, T.A., Khokhar, D.A., Ali, I., Memon, N., Channa, N., Bakhat, S., Rafique, T., Mahar, R.B., 2023. Insight on the properties of pumice mineral for the combined adsorption distillation of membrane reject water. Minerals 13(9), 1131. https://doi.org/10.3390/min13091131.
    [31]
    Ray, S., Vashishth, R., 2024. From water to plate: Reviewing the bioaccumulation of heavy metals in fish and unraveling human health risks in the food chain. Emerg. Contam. 10(4), 100358. https://doi.org/10.1016/j.emcon.2024.100358.
    [32]
    Saini, K., Kumari, A., Sahoo, A., Pant, K.K., Bhaskar, T., 2023. Eggshell-lignin carbon composite for methyl orange removal from wastewater. Ind. Eng. Chem. Res. 62(38), 15499-15510. https://doi.org/10.1021/acs.iecr.3c02029.
    [33]
    Salih, S.S., Mohammed, H.N., Abdullah, G.H., Kadhom, M., Ghosh, T.K., 2020. Simultaneous removal of Cu (II), Cd (II), and industrial dye onto a composite chitosan biosorbent. J. Polym. Environ. 28(1), 354-365. https://doi.org/10.1007/s10924-019-01612-x.
    [34]
    Salih, S.S., Shihab, M.A., Mohammed, H.N., Kadhom, M., Albayati, N., Ghosh, T.K., 2024. Chitosan-vermiculite composite adsorbent: Preparation, characterization, and competitive adsorption of Cu (II) and Cd (II) ions. J. Water Process Eng. 59, 105044.
    [35]
    Sriram, G., Thangarasu, S., Selvakumar, K., Kurkuri, M., Dhineshbabu, N.R., Oh, T.H., 2024. Effective removal of Rose Bengal using Ni-Co-Zn layered triple hydroxide: Studies on batch adsorption, mechanism, selectivity, co-ions, and reusability. Colloids Surf. A Physicochem. Eng. Asp. 685, 133199. https://doi.org/10.1016/j.colsurfa.2024.133199.
    [36]
    Wang, L., Li, J., Zhong, G., Li, J., Lu, X., Wang, S., Tang, Y., 2023a. Diatom biochar recovered Au(III) efficiently from both synthetic and real electroplating wastewaters. ACS ES&T Water 3(5), 1395-1405. https://doi.org/10.1021/acsestwater.3c00066.
    [37]
    Wang, X., Xu, Q., Zhang, L., Pei, L., Xue, H., Li, Z., 2023b. Adsorption of methylene blue and Congo red from aqueous solution on 3D MXene/carbon foam hybrid aerogels: A study by experimental and statistical physics modeling. J. Environ. Chem. Eng. 11(1), 109206. https://doi.org/10.1016/j.jece.2022.109206.
    [38]
    Wang, X., Zhang, R., Li, Z., Yan, B., 2022. Adsorption properties and influencing factors of Cu(II) on polystyrene and polyethylene terephthalate microplastics in seawater. Sci. Total Environ. 812 (2022) 152573. https://doi.org/10.1016/j.scitotenv.2021.152573.
    [39]
    Wen, Z., Xi, J., Lu, J., Zhang, Y., Cheng, G., Zhang, Y., Chen, R., 2021. Porous biochar-supported MnFe2O4 magnetic nanocomposite as an excellent adsorbent for simultaneous and effective removal of organic/inorganic arsenic from water. J. Hazard. Mater. 411, 124909. https://doi.org/10.1016/j.jhazmat.2020.124909.
    [40]
    Yaseen, S.M., Salih, S.S., Kadhom, M., Mohammed, H.N., 2023. Enhancement of phenol recovery from wastewater by nanofluid utilizing liquid-liquid extraction method in a membrane-based contactor. Chem. Eng. Res. Des. 196, 404-412. https://doi.org/10.1016/j.cherd.2023.06.064.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (0) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return