Volume 18 Issue 4
Dec.  2025
Turn off MathJax
Article Contents
Xin Wang, Chao Deng, Xin Yin, Jia Wei, Jia-cheng Zou. 2025: Assessing climate change impacts on streamflow in upper Han River Basin using deep learning models ensembled with Bayesian model averaging. Water Science and Engineering, 18(4): 412-421. doi: 10.1016/j.wse.2025.08.004
Citation: Xin Wang, Chao Deng, Xin Yin, Jia Wei, Jia-cheng Zou. 2025: Assessing climate change impacts on streamflow in upper Han River Basin using deep learning models ensembled with Bayesian model averaging. Water Science and Engineering, 18(4): 412-421. doi: 10.1016/j.wse.2025.08.004

Assessing climate change impacts on streamflow in upper Han River Basin using deep learning models ensembled with Bayesian model averaging

doi: 10.1016/j.wse.2025.08.004
Funds:

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFC3202802), the National Natural Science Foundation of China (Grant No. 42307117), the Fundamental Research Funds for the Central Universities (Grant No. B230201039), the China Postdoctoral Science Foundation (Grant No. 2023M740984), and the Hong Kong Scholars Program (Grant No. XJ2024046).

  • Received Date: 2024-12-21
  • Accepted Date: 2025-06-26
  • Available Online: 2025-12-03
  • Accurate streamflow prediction under climate change is essential for mitigating natural disasters and optimizing water resources management. However, streamflow prediction is subject to considerable uncertainties due to the complexity of hydrological model structures, parameterization, and input forcing data. This study predicted monthly streamflow in the upper Han River Basin in China under three Shared Socioeconomic Pathways (SSP) scenarios, using climate projections from five Coupled Model Intercomparison Project Phase 6 (CMIP6) climate models. Bias correction of climate model outputs was performed prior to streamflow simulation using four deep learning approaches: long short-term memory, gated recurrent unit, temporal convolutional network, and transformer. To reduce uncertainties inherent in individual deep learning models, Bayesian model averaging (BMA) was employed to integrate their predictions. The results showed that the three deep learning models achieved satisfactory performance with Nash-Sutcliffe model efficiency coefficient (NSE) values exceeding 0.8, while BMA exhibited superior robustness and accuracy, with the highest NSE and lowest root mean square error. Projected precipitation, mean air temperature, and potential evapotranspiration generally decreased during 2026-2100 relative to the historical period (1970-2017), suggesting a colder and drier regional climate. Streamflow was projected to decline significantly across all three scenarios, particularly from June to September, highlighting the potential for exacerbated water scarcity in the future.

     

  • loading
  • [1]
    Adib, M.N.M., Harun, S., 2022. Metalearning approach coupled with CMIP6 multi-GCM for future monthly streamflow forecasting. Journal of Hydrologic Engineering 27(6), 05022004. https://doi.org/10.1061/(asce)he.1943-5584.0002176.
    [2]
    Akbarian, M., Saghafian, B., Golian, S., 2023. Monthly streamflow forecasting by machine learning methods using dynamic weather prediction model outputs over Iran. Journal of Hydrology 620, 129480. https://doi.org/10.1016/j.jhydrol.2023.129480.
    [3]
    Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration - Guidelines for Computing Crop Water Requirements. FAO, Rome.
    [4]
    Arsenault, R., Gatien, P., Renaud, B., Brissette, F., Martel, J.-L., 2015. A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation. Journal of Hydrology 529, 754-767. https://doi.org/10.1016/j.jhydrol.2015.09.001.
    [5]
    Bagcaci, S.C., Yucel, I., Duzenli, E., Yilmaz, M.T., 2021. Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey. Atmospheric Research 256, 105576. https://doi.org/10.1016/j.atmosres.2021.105576.
    [6]
    Bai, S., Zico Kolter J., Koltun V., 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. Arxiv 1803.01271. https://doi.org/10.48550/arXiv.1803.01271.
    [7]
    Chiang, Y.M., Hao, R.N., Xu, Y.P., Liu, L., 2022. Multi-source rainfall merging and reservoir inflow forecasting by ensemble technique and artificial intelligence. Journal of Hydrology: Regional Studies 44, 101204. https://doi.org/10.1016/j.ejrh.2022.101204.
    [8]
    Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Arxiv 1046.1078. https://doi.org/10.48550/arXiv.1406.1078.
    [9]
    Duan, Q., Ajami, N.K., Gao, X., Sorooshian, S., 2007. Multi-model ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources 30(5), 1371-1386. https://doi.org/10.1016/j.advwatres.2006.11.014.
    [10]
    Edamo, M,L, Hatiye, S.D., Minda, T.T., Ukumo, T.Y., 2023. Flood inundation and risk mapping under climate change scenarios in the lower Bilate catchment, Ethiopia. Natural Hazards 118, 2199-2226. https://doi.org/10.1007/s11069-023-06101-y.
    [11]
    Gao, J., Du, J., Yang, C., Deqing, Z., Ma, P., Zhuo, G., 2022. Evaluation and correction of climate simulations for the Tibetan Plateau using the CMIP6 models. Atmosphere 13(12), 1947. https://doi.org/10.3390/atmos13121947.
    [12]
    Gneiting, T., Raftery, A.E., Westveld, A.H., Goldman, T., 2005. Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review 133(5), 1098-1118. https://doi.org/10.1175/mwr2904.1.
    [13]
    Gradiyanto, F., Parmantoro, P.N., Suharyanto, 2025. Impact of climate change on Kupang River flow and hydrological extremes in Greater Pekalongan, Indonesia. Water Science and Engineering 18(1), 69-77. https://doi.org/10.1016/j.wse.2024.03.005.
    [14]
    Gray, L.C., Zhao, L., Stillwell, A.S., 2023. Impacts of climate change on global total and urban runoff. Journal of Hydrology 620, 129352. https://doi.org/10.1016/j.jhydrol.2023.129352.
    [15]
    Greve, P., Kahil, T., Mochizuki, J., Schinko, T., Satoh, Y., Burek, P., Fischer, G., Tramberend, S., Burtscher, S., Langan, S., et al., 2018. Global assessment of water challenges under uncertainty in water scarcity projections. Nature Sustainability 1, 486-494. https://doi.org/10.1038/s41893-018-0134-9.
    [16]
    Guo, Y., Xu, Y.P., Xie, J., Chen, H., Si, Y., Liu, J., 2021. A weights combined model for middle and long-term streamflow forecasts and its value to hydropower maximization. Journal of Hydrology 602, 126794. https://doi.org/10.1016/j.jhydrol.2021.126794.
    [17]
    Han, H., Morrison, R.R., 2022. Data-driven approaches for runoff prediction using distributed data. Stochastic Environmental Research and Risk Assessment 36, 2153-2171. https://doi.org/10.1007/s00477-021-01993-3.
    [18]
    Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Computation 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.
    [19]
    Jozaghi, A., Shen, H., Ghazvinian, M., Seo, D.J., Zhang, Y., Welles, E., Reed, S., 2021. Multi-model streamflow prediction using conditional bias-penalized multiple linear regression. Stochastic Environmental Research and Risk Assessment 35, 2355-2373. https://doi.org/10.1007/s00477-021-02048-3.
    [20]
    Kim, J., Porter, J., Kearns, E.J., 2023. Exposure of the US population to extreme precipitation risk has increased due to climate change. Scientific Reports 13, 21782. https://doi.org/10.1038/s41598-023-48969-7.
    [21]
    Lees, T., Buechel, M., Anderson, B., Slater, L., Reece, S., Coxon, G., Dadson, S.J., 2021. Benchmarking data-driven rainfall-runoff models in Great Britain: A comparison of long short-term memory (LSTM)-based models with four lumped conceptual models. Hydrology and Earth System Sciences 25(10), 5517-5534. https://doi.org/10.5194/hess-25-5517-2021.
    [22]
    Li, G., Liu, Z., Zhang, J., Han, H., Shu, Z., 2024. Bayesian model averaging by combining deep learning models to improve lake water level prediction. Science of The Total Environment 906, 167718. https://doi.org/10.1016/j.scitotenv.2023.167718.
    [23]
    Liu, G., Tang, Z., Qin, H., Liu, S., Shen, Q., Qu, Y., Zhou, J., 2022. Short-term runoff prediction using deep learning multi-dimensional ensemble method. Journal of Hydrology 609, 127762. https://doi.org/10.1016/j.jhydrol.2022.127762.
    [24]
    Liu, W., Kuo, Y., Zhao, E., 2021. Influence of the South-to-North Water Transfer and the Yangtze River mitigation projects on the water quality of Han River, China. Environmental Earth Sciences 80, 246. https://doi.org/10.1007/s12665-021-09534-5.
    [25]
    Liu, Z., Merwade, V., 2018. Accounting for model structure, parameter and input forcing uncertainty in flood inundation modeling using Bayesian model averaging. Journal of Hydrology 565, 138-149. https://doi.org/10.1016/j.jhydrol.2018.08.009.
    [26]
    Lun, Y., Liu, L., Cheng, L., Li, X., Li, H., Xu, Z., 2021. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. International Journal of Climatology 41(7), 3994-4018. https://doi.org/10.1002/joc.7055.
    [27]
    Meng, E., Huang, S., Huang, Q., Fang, W., Wu, L., Wang, L., 2019. A robust method for non-stationary streamflow prediction based on improved EMD-SVM model. Journal of Hydrology 568, 462-478. https://doi.org/10.1016/j.jhydrol.2018.11.015.
    [28]
    Mohammadi, B., 2021. A review on the applications of machine learning for runoff modeling. Sustainable Water Resources Management 7, 98. https://doi.org/10.1007/s40899-021-00584-y.
    [29]
    Moknatian, M., Mukundan, R., 2023. Uncertainty analysis of streamflow simulations using multiple objective functions and Bayesian model averaging. Journal of Hydrology 617, 128961. https://doi.org/10.1016/j.jhydrol.2022.128961.
    [30]
    Neumann, A., Dong, F., Shimoda, Y., Arnillas, C.A., Javed, A., Yang, C., Zamaria, S., Mandal, S., Wellen, C., Paredes, D., 2021. A review of the current state of process-based and data-driven modelling: Guidelines for Lake Erie managers and watershed modellers. Environmental Reviews 29(4), 443-490. https://doi.org/10.1139/er-2020-0070.
    [31]
    Niu, W., Feng, Z., Chen, Y., Zhang, H., Cheng, C., 2020. Annual streamflow time series prediction using extreme learning machine based on gravitational search algorithm and variational mode decomposition. Journal of Hydrologic Engineering 25(5), 04020008. https://doi.org/10.1061/(asce)he.1943-5584.0001902.
    [32]
    Nooni, I.K., Ogou, F.K., Chaibou, A.A.S., Nakoty, F.M., Gnitou, G.T., Lu, J., 2023. Evaluating CMIP6 historical mean precipitation over Africa and the Arabian Peninsula against satellite-based observation. Atmosphere 14(3), 607. https://doi.org/10.3390/atmos14030607.
    [33]
    Nourani, V., Gokcekus, H., Gichamo, T., 2021. Ensemble data-driven rainfall-runoff modeling using multi-source satellite and gauge rainfall data input fusion. Earth Science Informatics 14, 1787-1808. https://doi.org/10.1007/s12145-021-00615-4.
    [34]
    Raftery, A.E., Gneiting, T., Balabdaoui, F., Polakowski, M., 2005. Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review 133(5), 1155-1174. https://doi.org/10.1175/mwr2906.1.
    [35]
    Rahimzad, M., Moghaddam Nia, A., Zolfonoon, H., Soltani, J., Danandeh Mehr, A., Kwon, H.-H., 2021. Performance comparison of an LSTM-based deep learning model versus conventional machine learning algorithms for streamflow forecasting. Water Resources Management 35, 4167-4187. https://doi.org/10.1007/s11269-021-02937-w.
    [36]
    Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., Prabhat., 2019. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195-204. https://doi.org/10.1038/s41586-019-0912-1.
    [37]
    Sang, J., Hou, B., Wang, H., Ding, X., 2023. Prediction of water resources change trend in the Three Gorges Reservoir Area under future climate change. Journal of Hydrology 617, 128881. https://doi.org/10.1016/j.jhydrol.2022.128881.
    [38]
    Shamseldin, A.Y., Oconnor, K.M., Liang, G.C., 1997. Methods for combining the outputs of different rainfall-runoff models. Journal of Hydrology 197(1-4), 203-229. https://doi.org/10.1016/s0022-1694(96)03259-3.
    [39]
    Tan, Q.F., Lei X.H., Wang, X., Wang, H., Wen, X., Ji, Y., Kang, A.Q., 2018. An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach. Journal of Hydrology 567, 767-780. https://doi.org/10.1016/j.jhydrol.2018.01.015.
    [40]
    Teutschbein, C., Seibert, J., 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology 456, 12-29. https://doi.org/10.1016/j.jhydrol.2012.05.052.
    [41]
    Themessl, M.J., Gobiet, A., Heinrich, G., 2012. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change 112, 449-468. https://doi.org/10.1007/s10584-011-0224-4.
    [42]
    Torres, F.L.R., Lima, L.M.M., Reboita, M.S., de Queiroz, A.R., Lima, J.W.M., 2024. Integrating hydrological and machine learning models for enhanced streamflow forecasting via Bayesian model averaging in a hydro-dominant power system. Water 16(4), 586. https://doi.org/10.3390/w16040586.
    [43]
    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is all you need. In: Guyon I., von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing Systems. NeurIPS, San Diego.
    [44]
    Viney, N.R., Bormann, H., Breuer, L., Bronstert, A., Croke, B.F.W., Frede, H., Graff, T., Hubrechts, L., Huisman, J.A., Jakeman, A.J., et al., 2009. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) II: Ensemble combinations and predictions. Advances in Water Resources 32(2), 147-158. https://doi.org/10.1016/j.advwatres.2008.05.006.
    [45]
    Vrugt, J.A., Diks, C.G.H., Clark, M.P., 2008. Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling. Environmental Fluid Mechanics 8, 579-595. https://doi.org/10.1007/s10652-008-9106-3.
    [46]
    Wagena, M.B., Goering, D., Collick, A.S., Bock, E., Fuka, D.R., Buda, A., Easton, Z.M., 2020. Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian models. Environmental Modelling & Software 126, 104669. https://doi.org/10.1016/j.envsoft.2020.104669.
    [47]
    Wang, H., Xiao, W., Zhao, Y., Wang, Y., Hou, B., Zhou, Y., Yang, H., Zhang, X., Cui, H., 2019. The spatiotemporal variability of evapotranspiration and its response to climate change and land use/land cover change in the Three Gorges Reservoir. Water 11(9), 1739. https://doi.org/10.3390/w11091739.
    [48]
    Wang, J., Li, Z., Zhou, L., Ma, C., Sun, W., 2025. Ensemble streamflow simulations in a Qinghai-Tibet Plateau Basin using a deep learning method with remote sensing precipitation data as input. Remote Sensing 17(6), 967. https://doi.org/10.3390/rs17060967.
    [49]
    Wang, W., Shao, Q., Yang, T., Peng, S., Yu, Z., Taylo, J., Xing, W., Zhao, C., Sun, F., 2013. Changes in daily temperature and precipitation extremes in the Yellow River Basin, China. Stochastic Environmental Research and Risk Assessment 27, 401-421. https://doi.org/10.1007/s00477-012-0615-8.
    [50]
    Wang, Z.Y., Qiu, J., Li, F.F., 2018. Hybrid models combining EMD/EEMD and ARIMA for long-term streamflow forecasting. Water 10(7), 853. https://doi.org/10.3390/w10070853.
    [51]
    Xu, C., Yuan, C., Li, X., Lin, Y., Fan, H., 2023. Projection of disaster-causing risk of extreme precipitation in the Yangtze River Basin based on CMIP6. Hydrology Research 54(3), 401-417. https://doi.org/10.2166/nh.2023.141.
    [52]
    Xu, Z., Zhang, R., 2023. Compound extreme events in Yarlung Zangbo River Basin from 1977 to 2018. Water Science and Engineering 16(1), 36-44. https://doi.org/10.1016/j.wse.2022.08.002.
    [53]
    Yu, H., Yang, L., Feng, Q., Barzegar, R., Adamowski, J.F., Wen, X., 2024. Ensemble learning of decomposition-based machine learning models for multistep-ahead daily streamflow forecasting in Northwest China. Hydrological Sciences Journal 69(11), 1501-1522. https://doi.org/10.1080/02626667.2024.2374868.
    [54]
    Yuan, X., Wang, Y., Ji, P., Wu, P., Sheffield, J., Otkin J.A., 2023. A global transition to flash droughts under climate change. Science 380, 187-191. https://doi.org/10.1126/science.abn6301.
    [55]
    Zhang, J., Liu, P, Wang, H, Lei, X, Zhou, Y., 2015. A Bayesian model averaging method for the derivation of reservoir operating rules. Journal of Hydrology 528, 276-285. https://doi.org/10.1016/j.jhydrol.2015.06.041.
    [56]
    Zhang, J., Xiao, H., Fang, H., 2022. Component-based reconstruction prediction of runoff at multi-time scales in the source area of the Yellow River based on the ARMA model. Water Resources Management 36, 433-448. https://doi.org/10.1007/s11269-021-03035-7.
    [57]
    Zhang, L., Chen, X., Xin, X., 2019. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Advances in Climate Change Research 15(5), 519-525 (in Chinese). https://doi.org/10.12006/j.issn.1673-1719.2019.082.
    [58]
    Zhang, S., Gan, T.Y., Bush, A.B.G., Zhang, G., 2023. Evaluation of the impact of climate change on the streamflow of major pan-Arctic river basins through machine learning models. Journal of Hydrology 619, 129295. https://doi.org/10.1016/j.jhydrol.2023.129295.
    [59]
    Zhu, Q., Gao, X., Xu, Y.P., Tian, Y., 2019. Merging multi-source precipitation products or merging their simulated hydrological flows to improve streamflow simulation. Hydrological Sciences Journal 64(8), 910-920. https://doi.org/10.1080/02626667.2019.1612522.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return