Volume 18 Issue 4
Dec.  2025
Turn off MathJax
Article Contents
Lin-xia Gao, Wan-qiu Xing, You Cheng, Zhi-yu Feng, Wei-guang Wang, Ruo-han Wang. 2025: Multi-time scale estimation of water retention in a humid basin in southern China using SWAT model. Water Science and Engineering, 18(4): 401-411. doi: 10.1016/j.wse.2025.09.001
Citation: Lin-xia Gao, Wan-qiu Xing, You Cheng, Zhi-yu Feng, Wei-guang Wang, Ruo-han Wang. 2025: Multi-time scale estimation of water retention in a humid basin in southern China using SWAT model. Water Science and Engineering, 18(4): 401-411. doi: 10.1016/j.wse.2025.09.001

Multi-time scale estimation of water retention in a humid basin in southern China using SWAT model

doi: 10.1016/j.wse.2025.09.001
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No. U2240218).

  • Received Date: 2025-03-19
  • Accepted Date: 2025-08-05
  • Available Online: 2025-12-03
  • Water conservation, a critical ecosystem service, is primarily quantified through water retention (WR), which plays a pivotal role in sustainable socio-economic development and water resources management. However, the absence of multi-temporal modeling of land use and climate change impacts on eco-hydrological processes limits the accurate estimation of WR, particularly in humid regions. This study employed the Soil and Water Assessment Tool (SWAT) model coupled with the water balance principle to estimate WR in the source area of the Xin'an River (SXAR) in China from 2009 to 2017. The multi-temporal variations of WR and its response to climate and land use changes were analyzed through scenario-based hydrological simulations. Results indicated that annual WR ranged from 256.4 mm to 412.7 mm, monthly WR varied between 0 mm and 67.6 mm, and peak daily WR coincided with extreme rainfall events. Precipitation and evapotranspiration were identified as the primary factors influencing WR variability at daily and monthly scales. Spatially, higher WR values were observed in the northeastern SXAR, reflecting the influences of land use patterns and topography. Notably, agricultural land exhibited negative WR during summer months due to crop water storage demands. Overall, climate change exerted more immediate effects on WR at shorter timescales, whereas land use change produced longer-term impacts. This study offers valuable theoretical insights into WR mechanisms of response to environmental changes and provides practical guidance for water resources planning and management in humid and sub-humid regions.

     

  • loading
  • [1]
    Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R., Van Griensven, A., Van Liew, M.W., 2012. SWAT: Model use, calibration, and validation. Trans. ASABE 55(4), 1491-1508. https://doi.org/10.13031/2013.42256.
    [2]
    Bai, Y., Ochuodho, T.O., Yang, J., 2019. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 102, 51-64. https://doi.org/10.1016/j.ecolind.2019.01.079.
    [3]
    Brown, A.E., Zhang, L., McMahon, T.A., Western, A.W., Vertessy, R.A., 2005. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 310(1-4), 28-61. https://doi.org/10.1016/j.jhydrol.2004.12.010.
    [4]
    Chen, Y.F., Liu, X.H., Ma, Y.D., He, J.Q., He, Y., Zheng, C., Gao, W.D., Ma, C.P., 2023. Variability analysis and the conservation capacity of soil water storage under different vegetation types in arid regions. Catena 230, 107269. https://doi.org/10.1016/j.catena.2023.107269.
    [5]
    Dai, J.M., Zha, X., Huang, S.Y., Chen, S.F., Zhai, S.H., Wang, L.Y., Liu, C., 2017. Effects of slope gradients on erosion under different vegetation coverage on purple slopes. J. Soil Water Conserv. 31(3), 33-38 (in Chinese). https://doi.org/10.13870/j.cnki.stbcxb.2017.03.006.
    [6]
    Daily, G.C., Polasky, S., Goldstein, J., Kareiva, P.M., Mooney, H.A., Pejchar, L., Ricketts, T.H., Salzman, J., Shallenberger, R., 2009. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 7(1), 21-28. https://doi.org/10.1890/080025.
    [7]
    Daneshi, A., Brouwer, R., Najafinejad, A., Panahi, M., Zarandian, A., Maghsood, F.F., 2021. Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. J. Hydrol. 593, 125621. https://doi.org/10.1016/j.jhydrol.2020.125621.
    [8]
    Dennedy-Frank, P.J., Muenich, R.L., Chaubey, I., Ziv, G., 2016. Comparing two tools for ecosystem service assessments regarding water resources decisions. J. Environ. Manage. 177, 331-340. https://doi.org/10.1016/j.jenvman.2016.03.012.
    [9]
    Diaz, S., Pascual, U., Stenseke, M., Martin-Lopez, B., Watson, R.T., Molnar, Z., Hill, R., Chan, K.M.A., Baste, I.A., Brauman, K.A., et al., 2018. Assessing nature's contributions to people. Science 359(6373), 270-272. https://doi.org/10.1126/science.aap8826.
    [10]
    Duan, K., Sun, G., Liu, N., 2021. A review of research on watershed water-carbon balance evolution in a changing environment. J. Hydraul. Eng. 52(3), 300-309 (in Chinese). https://doi.org/10.13243/j.cnki.slxb.20200172.
    [11]
    Esquivel, J., Echeverria, C., Saldana, A., Fuentes, R., 2020. High functional diversity of forest ecosystems is linked to high provision of water flow regulation ecosystem service. Ecol. Indic. 115, 106433. https://doi.org/10.1016/j.ecolind.2020.106433.
    [12]
    Glavan, M., Pintar, M., Volk, M., 2013. Land use change in a 200-year period and its effect on blue and green water flow in two Slovenian Mediterranean catchments-Lessons for the future. Hydrol. Process. 27(26), 3964-3980. https://doi.org/10.1002/hyp.9540.
    [13]
    Gong, S.H., Xiao, Y., Zheng, H., Xiao, Y., Ouyang, Z.Y., 2017. Spatial patterns of ecosystem water conservation in China and its impact factors analysis. Acta Ecol. Sin. 37(7), 2455-2462 (in Chinese). https://doi.org/10.5846/stxb201512012406.
    [14]
    Hoyer, R., Chang, H., 2014. Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization. Appl. Geogr. 53, 402-416. https://doi.org/10.1016/j.apgeog.2014.06.023.
    [15]
    Hu, W.M., Li, G., Gao, Z.H., Jia, G.Y., Wang, Z.C., Li, Y., 2020. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 733, 139423. https://doi.org/10.1016/j.scitotenv.2020.139423.
    [16]
    Knighton, J., Singh, K., Evaristo, J., 2020. Understanding catchment-scale forest root water uptake strategies across the Continental United States through inverse ecohydrological modeling. Geophys. Res. Lett. 47(1), e2019GL085937. https://doi.org/10.1029/2019GL085937.
    [17]
    Li, D.H., Zhang, X.Y., Wang, Y., Zhang, X., Li, L., Lu, L., 2021a. Evolution process of ecosystem services and the trade-off synergy in Xin'an River Basin. Acta Ecol. Sin. 41(17), 1-13 (in Chinese). https://doi.org/10.5846/stxb202010102575.
    [18]
    Li, M.Y., Liang, D., Xia, J., Song, J.X., Cheng, D.D., Wu, J.T., Cao, Y.L., Sun, H.T., Li, Q., 2021b. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. J. Environ. Manage. 286, 112212. https://doi.org/10.1016/j.jenvman.2021.112212.
    [19]
    Li, N., Sun, P.L., Zhang, J.Y., Mo, J.X., Wang, K., 2024. Spatiotemporal evolution and driving factors of ecosystem services' transformation in the Yellow River basin, China. Environ. Monit. Assess. 196(3), 252. https://doi.org/10.1007/s10661-024-12397-5.
    [20]
    Li, Q., Wei, X.H., Zhang, M.F., Liu, W.F., Fan, H.B., Zhou, G.Y., Giles-Hansen, K., Liu, S.R., Wang, Y., 2017. Forest cover change and water yield in large forested watersheds: A global synthetic assessment. Ecohydrology 10(4), e1838. https://doi.org/10.1002/eco.1838.
    [21]
    Li, Y.T., Kong, M., Zang, C.F., Deng, J.L., 2023. Spatial and temporal evolution and driving mechanisms of water conservation amount of major ecosystems in typical watersheds in subtropical China. Forests 14(1), 93. https://doi.org/10.3390/f14010093.
    [22]
    Lin, B.Q., Chen, X.W., Yao, H.X., Chen, Y., Liu, M.B., Gao, L., James, A., 2015. Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecol. Indic. 58, 55-63. https://doi.org/10.1016/j.ecolind.2015.05.031.
    [23]
    Lin, F., Chen, X.W., Yao, W.Y., Fang, Y.H., Deng, H.J., Wu, J.F., Lin, B., 2020. Multi-time scale analysis of water conservation in a discontinuous forest watershed based on SWAT model. Acta Geographica Sinica 75(5), 1065-1078 (in Chinese). https://doi.org/10.11821/dlxb202005013.
    [24]
    Lin, F., Chen, X.W., Yao, H.X., Lin, F.Y., 2022. SWAT model-based quantification of the impact of land-use change on forest-regulated water flow. Catena 211, 105975. https://doi.org/10.1016/j.catena.2021.105975.
    [25]
    Liu, J.H., Zheng, X., Fan, J.M., Zhao, L.L., 2021. Evaluation of the value of water retention service in the middle and upper reaches of Hunhe River based on SWAT Model. Journal of Applied Ecology 32(11), 3905-3912 (in Chinese). https://doi.org/10.13287/j.1001-9332.202111.007.
    [26]
    Liu, S.M., Tian, D.L., Xiang, W.H., Yan, W.D., Liu, Y.G., Hu, X.J., 2015. The impacts of thinning intensity on overland flow in a Chinese fir plantation. Acta Ecol. Sin. 35(17), 5769-5775 (in Chinese). https://doi.org/10.5846/stxb201312102927.
    [27]
    Liu, Y.Y., Zhang, X.N., Xia, D.Z., You, J.S., Rong, Y.S., Bakir, M., 2013. Impacts of land-use and climate changes on hydrologic processes in the Qingyi River Watershed, China. J. Hydrol. Eng. 18(11), 1495-1512. https://doi.org/10.1061/(asce)he.1943-5584.0000485.
    [28]
    Liu, Z.Y., Li, C., Zhou, P., Chen, X.Z., 2016. A probabilistic assessment of the likelihood of vegetation drought under varying climate conditions across China. Sci. Rep. 6(1), 35105. https://doi.org/10.1038/srep35105.
    [29]
    Lu, L.T., Ren, T.T., Li, S.S., Han, Y.C., 2019. Analysis on spatio-temporal variation of water supply in Dalian City based on InVEST model. Bulletin of Soil and Water Conservation 39(4), 144-150 (in Chinese). https://doi.org/10.13961/j.cnki.stbctb.2019.04.023.
    [30]
    Marchin, R.M., Medlyn, B.E., Tjoelker, M.G., Ellsworth, D.S., 2023. Decoupling between stomatal conductance and photosynthesis occurs under extreme heat in broadleaf tree species regardless of water access. Global Change Biol. 29(22), 6319-6335. https://doi.org/10.1111/gcb.16929.
    [31]
    Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50(3), 885-900. https://doi.org/10.13031/2013.23153.
    [32]
    Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models. Part I-A discussion of principles. J. Hydrol. 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6.
    [33]
    Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., 2011. Soil and Water Assessment Tool, Theoretical Documentation Version 2009. Texas Water Resources Institute, College Station.
    [34]
    Novak, J.M., Busscher, W.J., Watts, D.W., Amonette, J.E., Ippolito, J.A., Lima, I.M., Gaskin, J., Das, K.C., Steiner, C., Ahmedna, M., et al., 2012. Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Sci. 177(5), 310-320. https://doi.org/10.1097/ss.0b013e31824e5593.
    [35]
    Ouyang, Z.Y., Wang, R.S., Zhao, J.Z., 1999. Ecosystem services and their economic valuation. Journal of Applied Ecology 10(5), 635. https://doi.org/10.1088/0256-307X/15/12/025.
    [36]
    Ouyang, Z.Y., Zheng, H., Xiao, Y., Polasky, S., Liu, J.G., Xu, W.H., Wang, Q., Zhang, L., Xiao, Y., Rao, E.M., 2016. Improvements in ecosystem services from investments in natural capital. Science 352(6292), 1455-1459. https://doi.org/10.1126/science.aaf2295.
    [37]
    Peng, H., Jia, Y.W., Qiu, Y.Q., Niu, C.W., Ding, X.Y., 2013. Assessing climate change impacts on the ecohydrology of the Jinghe River basin in the Loess Plateau, China. Hydrol. Sci. J. 58(3), 651-670. https://doi.org/10.1080/02626667.2013.774457.
    [38]
    Piao, S.L., Yin, G.D., Tan, J.G., Cheng, L., Huang, M.T., Li, Y., Liu, R.G., Mao, J.F., Myneni, R.B., Peng, S.S., et al., 2015. Detection and attribution of vegetation greening trend in China over the last 30 years. Global Change Biol. 21(4), 1601-1609. https://doi.org/10.1111/gcb.12795.
    [39]
    Priya, R.Y., Manjula, R., 2020. A review for comparing SWAT and SWAT coupled models and its applications. Mater. Today Proc. 45(7), 7190-7194. https://doi.org/10.1016/j.matpr.2021.02.414.
    [40]
    Redhead, J.W., May, L., Oliver, T.H., Hamel, I., Hamel, P., Sharp, R., Bullock, J.M., 2018. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci. Total Environ. 610-611, 666-677. https://doi.org/10.1016/j.scitotenv.2017.08.092.
    [41]
    Sajikumar, N., Remya, R.S., 2015. Impact of land cover and land use change on runoff characteristics. J. Environ. Manage. 161, 460-468. https://doi.org/10.1016/j.jenvman.2014.12.041.
    [42]
    Sample, J.E., Baber, I., Badger, R., 2016. A spatially distributed risk screening tool to assess climate and land use change impacts on water-related ecosystem services. Environmental Modelling & Software 83, 12-26. https://doi.org/10.1016/j.envsoft.2016.05.011.
    [43]
    Shen, Y.Q., Xiao, Y., Ouyang, Z.Y., Zhang, P., 2020. Water conservation service evaluation based on ecosystem quality in southwestern China. Mountain Res. 38(6), 816-828 (in Chinese). https://doi.org/10.16089/j.cnki.1008-2786.000558.
    [44]
    Soulis, K.X., 2021. Soil conservation service curve number (SCS-CN) method: Current applications, remaining challenges, and future perspectives. Water 13(2), 192. https://doi.org/10.3390/w13020192.
    [45]
    Sun, G., Zhang, L., Wang, Y.H., 2023. On accurately defining and quantifying the water retention services of forests. Acta Ecol. Sin. 43(1), 9-25 (in Chinese). https://doi.org/10.5846/stxb202202090327.
    [46]
    Vigerstol, K.L., Aukema, J.E., 2011. A comparison of tools for modeling freshwater ecosystem services. J. Environ. Manage. 92(10), 2403-2409. https://doi.org/10.1016/j.jenvman.2011.06.040.
    [47]
    Wang, S., Zhang, B., Wang, S., 2021a. Dynamic changes in water conservation in the Beijing-Tianjin Sandstorm Source Control Project Area: A case study of Xilin Gol League in China. Journal of Cleaner Production 293, 126054. https://doi.org/10.1016/j.jclepro.2021.126054.
    [48]
    Wang, Y.F., Ye, A.Z., Qiao, F., Li, Z.S., Miao, C.Y., Di, Z.H., Gong, W., 2021b. Review on connotation and estimation method of water conservation. South-to-North Water Transfers and Water Science & Technology 19(6), 1041-1071 (in Chinese). https://doi.org/10.13476/j.cnki.nsbdqk.2021.0109.
    [49]
    Wang, Z.G., Liu, C.M., Huang, Y.B., 2003. The theory of SWAT model and its application in Heihe Basin. Prog. Geogr. 22(1), 79-86 (in Chinese). https://doi.org/10.11820/dlkxjz.2003.01.010.
    [50]
    Wasko, C., Nathan, R., 2019. The local dependency of precipitation on historical changes in temperature. Climatic Change 156(1), 105-120. https://doi.org/10.1007/s10584-019-02523-5.
    [51]
    Wu, X., Shi, W.J., Tao, F.L., 2021. Estimations of forest water retention across China from an observation site-scale to a national-scale. Ecol. Indic. 132, 108274. https://doi.org/10.1016/j.ecolind.2021.108274.
    [52]
    Xiao, Q., Hu, D., Xiao, Y., 2017. Assessing changes in soil conservation ecosystem services and causal factors in the Three Gorges Reservoir region of China. Journal of Cleaner Production 163, S172-S180. https://doi.org/10.1016/j.jclepro.2016.09.012.
    [53]
    Xie, Y.C., Gong, J., Qi, S.S., Wu, J., Hu, B.Q., 2017. Spatio-temporal variation of water supply service in Bailong River watershed based on InVEST model. J. Nat. Resour. 32(8), 1337-1347 (in Chinese). https://doi.org/10.11849/zrzyxb.20160799.
    [54]
    Xing, W.Q., Cheng, Y., Yang, L.L., Wang, W.G., 2024. Variation in canopy conductance of Cunninghamia lanceolata forest and its response to environmental factors after an extreme rainfall event. Hydrological Processes 38(3), e15121. https://doi.org/10.1002/hyp.15121.
    [55]
    Xu, F., Zhao, L.L., Jia, Y.W., Niu, C.W., Liu, X.L., Liu, H.Y., 2022. Evaluation of water conservation function of Beijiang River basin in Nanling Mountains, China, based on WEP-L model. Ecol. Indic. 134, 108383. https://doi.org/10.1016/j.ecolind.2021.108383.
    [56]
    Yu, Z.W., Guo, X.Y., Zeng, Y.X., Koga, M., Vejre, H., 2018. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou City, China. Urban Forestry & Urban Greening 29, 113-121. https://doi.org/10.1016/j.ufug.2017.11.008.
    [57]
    Zhang, B., Li, W.H., Xie, G.D., Xiao, Y., 2009. Water conservation function and its measurement methods of forest ecosystem. Chin. J. Ecol. 28(3), 529-534 (in Chinese).
    [58]
    Zhang, D., Liu, X.M., Zhang, L., Zhang, Q., Gan, R., Li, X.H., 2020. Attribution of evapotranspiration changes in humid regions of China from 1982 to 2016. J. Geophys. Res. Atmos. 125(13), e2020JD032404. https://doi.org/10.1029/2020jd032404.
    [59]
    Zhang, G.C., Wu, Y.P., Li, H.W., Yin, X.W., Chervan, A., Liu, S.G., Qiu, L.J., Zhao, F.B., Sun, P.C., Wang, W.K., 2024. Assessment framework of water conservation based on analytical modeling of ecohydrological processes. J. Hydrol. 630, 130646. https://doi.org/10.1016/j.jhydrol.2024.130646.
    [60]
    Zhang, M.F., Wei, X.H., 2021. Deforestation, forestation, and water supply. Science 371(6533), 990-991. https://doi.org/10.1126/science.abe7821.
    [61]
    Zhang, Q., Yang, Z.S., Hao, X.C., Yue, P., 2019. Conversion features of evapotranspiration responding to climate warming in transitional climate regions in northern China. Clim. Dyn. 52(7-8), 3891-3903. https://doi.org/10.1007/s00382-018-4364-3.
    [62]
    Zheng, C.W., Deng, X.H., Li, Z.X., Xue, J., Ma, L.B., He, J., Lu, S.X., Shao, J.X., Cai, S.Y., Zhao, P.Y., 2024. Analysis of the spatial and temporal evolution of water resources conservation and human activity intensity in the Hexi region of Gansu Province. J. Desert Res. 44(1), 189-200 (in Chinese). https://doi.org/10.7522/j.issn.1000-694X.2023.00081.
    [63]
    Zhou, G.Y., Wei, X.H., Chen, X.Z., Zhou, P., Liu, X.D., Xiao, Y., Sun, G., Scott, D.F., Zhou, S.Y.D., Han, L.S., et al., 2015. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 6, 5918. https://doi.org/10.1038/ncomms6918.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return