| Citation: | Lin-xia Gao, Wan-qiu Xing, You Cheng, Zhi-yu Feng, Wei-guang Wang, Ruo-han Wang. 2025: Multi-time scale estimation of water retention in a humid basin in southern China using SWAT model. Water Science and Engineering, 18(4): 401-411. doi: 10.1016/j.wse.2025.09.001 |
| [1] |
Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R., Van Griensven, A., Van Liew, M.W., 2012. SWAT: Model use, calibration, and validation. Trans. ASABE 55(4), 1491-1508. https://doi.org/10.13031/2013.42256.
|
| [2] |
Bai, Y., Ochuodho, T.O., Yang, J., 2019. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 102, 51-64. https://doi.org/10.1016/j.ecolind.2019.01.079.
|
| [3] |
Brown, A.E., Zhang, L., McMahon, T.A., Western, A.W., Vertessy, R.A., 2005. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 310(1-4), 28-61. https://doi.org/10.1016/j.jhydrol.2004.12.010.
|
| [4] |
Chen, Y.F., Liu, X.H., Ma, Y.D., He, J.Q., He, Y., Zheng, C., Gao, W.D., Ma, C.P., 2023. Variability analysis and the conservation capacity of soil water storage under different vegetation types in arid regions. Catena 230, 107269. https://doi.org/10.1016/j.catena.2023.107269.
|
| [5] |
Dai, J.M., Zha, X., Huang, S.Y., Chen, S.F., Zhai, S.H., Wang, L.Y., Liu, C., 2017. Effects of slope gradients on erosion under different vegetation coverage on purple slopes. J. Soil Water Conserv. 31(3), 33-38 (in Chinese). https://doi.org/10.13870/j.cnki.stbcxb.2017.03.006.
|
| [6] |
Daily, G.C., Polasky, S., Goldstein, J., Kareiva, P.M., Mooney, H.A., Pejchar, L., Ricketts, T.H., Salzman, J., Shallenberger, R., 2009. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 7(1), 21-28. https://doi.org/10.1890/080025.
|
| [7] |
Daneshi, A., Brouwer, R., Najafinejad, A., Panahi, M., Zarandian, A., Maghsood, F.F., 2021. Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. J. Hydrol. 593, 125621. https://doi.org/10.1016/j.jhydrol.2020.125621.
|
| [8] |
Dennedy-Frank, P.J., Muenich, R.L., Chaubey, I., Ziv, G., 2016. Comparing two tools for ecosystem service assessments regarding water resources decisions. J. Environ. Manage. 177, 331-340. https://doi.org/10.1016/j.jenvman.2016.03.012.
|
| [9] |
Diaz, S., Pascual, U., Stenseke, M., Martin-Lopez, B., Watson, R.T., Molnar, Z., Hill, R., Chan, K.M.A., Baste, I.A., Brauman, K.A., et al., 2018. Assessing nature's contributions to people. Science 359(6373), 270-272. https://doi.org/10.1126/science.aap8826.
|
| [10] |
Duan, K., Sun, G., Liu, N., 2021. A review of research on watershed water-carbon balance evolution in a changing environment. J. Hydraul. Eng. 52(3), 300-309 (in Chinese). https://doi.org/10.13243/j.cnki.slxb.20200172.
|
| [11] |
Esquivel, J., Echeverria, C., Saldana, A., Fuentes, R., 2020. High functional diversity of forest ecosystems is linked to high provision of water flow regulation ecosystem service. Ecol. Indic. 115, 106433. https://doi.org/10.1016/j.ecolind.2020.106433.
|
| [12] |
Glavan, M., Pintar, M., Volk, M., 2013. Land use change in a 200-year period and its effect on blue and green water flow in two Slovenian Mediterranean catchments-Lessons for the future. Hydrol. Process. 27(26), 3964-3980. https://doi.org/10.1002/hyp.9540.
|
| [13] |
Gong, S.H., Xiao, Y., Zheng, H., Xiao, Y., Ouyang, Z.Y., 2017. Spatial patterns of ecosystem water conservation in China and its impact factors analysis. Acta Ecol. Sin. 37(7), 2455-2462 (in Chinese). https://doi.org/10.5846/stxb201512012406.
|
| [14] |
Hoyer, R., Chang, H., 2014. Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization. Appl. Geogr. 53, 402-416. https://doi.org/10.1016/j.apgeog.2014.06.023.
|
| [15] |
Hu, W.M., Li, G., Gao, Z.H., Jia, G.Y., Wang, Z.C., Li, Y., 2020. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 733, 139423. https://doi.org/10.1016/j.scitotenv.2020.139423.
|
| [16] |
Knighton, J., Singh, K., Evaristo, J., 2020. Understanding catchment-scale forest root water uptake strategies across the Continental United States through inverse ecohydrological modeling. Geophys. Res. Lett. 47(1), e2019GL085937. https://doi.org/10.1029/2019GL085937.
|
| [17] |
Li, D.H., Zhang, X.Y., Wang, Y., Zhang, X., Li, L., Lu, L., 2021a. Evolution process of ecosystem services and the trade-off synergy in Xin'an River Basin. Acta Ecol. Sin. 41(17), 1-13 (in Chinese). https://doi.org/10.5846/stxb202010102575.
|
| [18] |
Li, M.Y., Liang, D., Xia, J., Song, J.X., Cheng, D.D., Wu, J.T., Cao, Y.L., Sun, H.T., Li, Q., 2021b. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. J. Environ. Manage. 286, 112212. https://doi.org/10.1016/j.jenvman.2021.112212.
|
| [19] |
Li, N., Sun, P.L., Zhang, J.Y., Mo, J.X., Wang, K., 2024. Spatiotemporal evolution and driving factors of ecosystem services' transformation in the Yellow River basin, China. Environ. Monit. Assess. 196(3), 252. https://doi.org/10.1007/s10661-024-12397-5.
|
| [20] |
Li, Q., Wei, X.H., Zhang, M.F., Liu, W.F., Fan, H.B., Zhou, G.Y., Giles-Hansen, K., Liu, S.R., Wang, Y., 2017. Forest cover change and water yield in large forested watersheds: A global synthetic assessment. Ecohydrology 10(4), e1838. https://doi.org/10.1002/eco.1838.
|
| [21] |
Li, Y.T., Kong, M., Zang, C.F., Deng, J.L., 2023. Spatial and temporal evolution and driving mechanisms of water conservation amount of major ecosystems in typical watersheds in subtropical China. Forests 14(1), 93. https://doi.org/10.3390/f14010093.
|
| [22] |
Lin, B.Q., Chen, X.W., Yao, H.X., Chen, Y., Liu, M.B., Gao, L., James, A., 2015. Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecol. Indic. 58, 55-63. https://doi.org/10.1016/j.ecolind.2015.05.031.
|
| [23] |
Lin, F., Chen, X.W., Yao, W.Y., Fang, Y.H., Deng, H.J., Wu, J.F., Lin, B., 2020. Multi-time scale analysis of water conservation in a discontinuous forest watershed based on SWAT model. Acta Geographica Sinica 75(5), 1065-1078 (in Chinese). https://doi.org/10.11821/dlxb202005013.
|
| [24] |
Lin, F., Chen, X.W., Yao, H.X., Lin, F.Y., 2022. SWAT model-based quantification of the impact of land-use change on forest-regulated water flow. Catena 211, 105975. https://doi.org/10.1016/j.catena.2021.105975.
|
| [25] |
Liu, J.H., Zheng, X., Fan, J.M., Zhao, L.L., 2021. Evaluation of the value of water retention service in the middle and upper reaches of Hunhe River based on SWAT Model. Journal of Applied Ecology 32(11), 3905-3912 (in Chinese). https://doi.org/10.13287/j.1001-9332.202111.007.
|
| [26] |
Liu, S.M., Tian, D.L., Xiang, W.H., Yan, W.D., Liu, Y.G., Hu, X.J., 2015. The impacts of thinning intensity on overland flow in a Chinese fir plantation. Acta Ecol. Sin. 35(17), 5769-5775 (in Chinese). https://doi.org/10.5846/stxb201312102927.
|
| [27] |
Liu, Y.Y., Zhang, X.N., Xia, D.Z., You, J.S., Rong, Y.S., Bakir, M., 2013. Impacts of land-use and climate changes on hydrologic processes in the Qingyi River Watershed, China. J. Hydrol. Eng. 18(11), 1495-1512. https://doi.org/10.1061/(asce)he.1943-5584.0000485.
|
| [28] |
Liu, Z.Y., Li, C., Zhou, P., Chen, X.Z., 2016. A probabilistic assessment of the likelihood of vegetation drought under varying climate conditions across China. Sci. Rep. 6(1), 35105. https://doi.org/10.1038/srep35105.
|
| [29] |
Lu, L.T., Ren, T.T., Li, S.S., Han, Y.C., 2019. Analysis on spatio-temporal variation of water supply in Dalian City based on InVEST model. Bulletin of Soil and Water Conservation 39(4), 144-150 (in Chinese). https://doi.org/10.13961/j.cnki.stbctb.2019.04.023.
|
| [30] |
Marchin, R.M., Medlyn, B.E., Tjoelker, M.G., Ellsworth, D.S., 2023. Decoupling between stomatal conductance and photosynthesis occurs under extreme heat in broadleaf tree species regardless of water access. Global Change Biol. 29(22), 6319-6335. https://doi.org/10.1111/gcb.16929.
|
| [31] |
Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50(3), 885-900. https://doi.org/10.13031/2013.23153.
|
| [32] |
Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models. Part I-A discussion of principles. J. Hydrol. 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6.
|
| [33] |
Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., 2011. Soil and Water Assessment Tool, Theoretical Documentation Version 2009. Texas Water Resources Institute, College Station.
|
| [34] |
Novak, J.M., Busscher, W.J., Watts, D.W., Amonette, J.E., Ippolito, J.A., Lima, I.M., Gaskin, J., Das, K.C., Steiner, C., Ahmedna, M., et al., 2012. Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Sci. 177(5), 310-320. https://doi.org/10.1097/ss.0b013e31824e5593.
|
| [35] |
Ouyang, Z.Y., Wang, R.S., Zhao, J.Z., 1999. Ecosystem services and their economic valuation. Journal of Applied Ecology 10(5), 635. https://doi.org/10.1088/0256-307X/15/12/025.
|
| [36] |
Ouyang, Z.Y., Zheng, H., Xiao, Y., Polasky, S., Liu, J.G., Xu, W.H., Wang, Q., Zhang, L., Xiao, Y., Rao, E.M., 2016. Improvements in ecosystem services from investments in natural capital. Science 352(6292), 1455-1459. https://doi.org/10.1126/science.aaf2295.
|
| [37] |
Peng, H., Jia, Y.W., Qiu, Y.Q., Niu, C.W., Ding, X.Y., 2013. Assessing climate change impacts on the ecohydrology of the Jinghe River basin in the Loess Plateau, China. Hydrol. Sci. J. 58(3), 651-670. https://doi.org/10.1080/02626667.2013.774457.
|
| [38] |
Piao, S.L., Yin, G.D., Tan, J.G., Cheng, L., Huang, M.T., Li, Y., Liu, R.G., Mao, J.F., Myneni, R.B., Peng, S.S., et al., 2015. Detection and attribution of vegetation greening trend in China over the last 30 years. Global Change Biol. 21(4), 1601-1609. https://doi.org/10.1111/gcb.12795.
|
| [39] |
Priya, R.Y., Manjula, R., 2020. A review for comparing SWAT and SWAT coupled models and its applications. Mater. Today Proc. 45(7), 7190-7194. https://doi.org/10.1016/j.matpr.2021.02.414.
|
| [40] |
Redhead, J.W., May, L., Oliver, T.H., Hamel, I., Hamel, P., Sharp, R., Bullock, J.M., 2018. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci. Total Environ. 610-611, 666-677. https://doi.org/10.1016/j.scitotenv.2017.08.092.
|
| [41] |
Sajikumar, N., Remya, R.S., 2015. Impact of land cover and land use change on runoff characteristics. J. Environ. Manage. 161, 460-468. https://doi.org/10.1016/j.jenvman.2014.12.041.
|
| [42] |
Sample, J.E., Baber, I., Badger, R., 2016. A spatially distributed risk screening tool to assess climate and land use change impacts on water-related ecosystem services. Environmental Modelling & Software 83, 12-26. https://doi.org/10.1016/j.envsoft.2016.05.011.
|
| [43] |
Shen, Y.Q., Xiao, Y., Ouyang, Z.Y., Zhang, P., 2020. Water conservation service evaluation based on ecosystem quality in southwestern China. Mountain Res. 38(6), 816-828 (in Chinese). https://doi.org/10.16089/j.cnki.1008-2786.000558.
|
| [44] |
Soulis, K.X., 2021. Soil conservation service curve number (SCS-CN) method: Current applications, remaining challenges, and future perspectives. Water 13(2), 192. https://doi.org/10.3390/w13020192.
|
| [45] |
Sun, G., Zhang, L., Wang, Y.H., 2023. On accurately defining and quantifying the water retention services of forests. Acta Ecol. Sin. 43(1), 9-25 (in Chinese). https://doi.org/10.5846/stxb202202090327.
|
| [46] |
Vigerstol, K.L., Aukema, J.E., 2011. A comparison of tools for modeling freshwater ecosystem services. J. Environ. Manage. 92(10), 2403-2409. https://doi.org/10.1016/j.jenvman.2011.06.040.
|
| [47] |
Wang, S., Zhang, B., Wang, S., 2021a. Dynamic changes in water conservation in the Beijing-Tianjin Sandstorm Source Control Project Area: A case study of Xilin Gol League in China. Journal of Cleaner Production 293, 126054. https://doi.org/10.1016/j.jclepro.2021.126054.
|
| [48] |
Wang, Y.F., Ye, A.Z., Qiao, F., Li, Z.S., Miao, C.Y., Di, Z.H., Gong, W., 2021b. Review on connotation and estimation method of water conservation. South-to-North Water Transfers and Water Science & Technology 19(6), 1041-1071 (in Chinese). https://doi.org/10.13476/j.cnki.nsbdqk.2021.0109.
|
| [49] |
Wang, Z.G., Liu, C.M., Huang, Y.B., 2003. The theory of SWAT model and its application in Heihe Basin. Prog. Geogr. 22(1), 79-86 (in Chinese). https://doi.org/10.11820/dlkxjz.2003.01.010.
|
| [50] |
Wasko, C., Nathan, R., 2019. The local dependency of precipitation on historical changes in temperature. Climatic Change 156(1), 105-120. https://doi.org/10.1007/s10584-019-02523-5.
|
| [51] |
Wu, X., Shi, W.J., Tao, F.L., 2021. Estimations of forest water retention across China from an observation site-scale to a national-scale. Ecol. Indic. 132, 108274. https://doi.org/10.1016/j.ecolind.2021.108274.
|
| [52] |
Xiao, Q., Hu, D., Xiao, Y., 2017. Assessing changes in soil conservation ecosystem services and causal factors in the Three Gorges Reservoir region of China. Journal of Cleaner Production 163, S172-S180. https://doi.org/10.1016/j.jclepro.2016.09.012.
|
| [53] |
Xie, Y.C., Gong, J., Qi, S.S., Wu, J., Hu, B.Q., 2017. Spatio-temporal variation of water supply service in Bailong River watershed based on InVEST model. J. Nat. Resour. 32(8), 1337-1347 (in Chinese). https://doi.org/10.11849/zrzyxb.20160799.
|
| [54] |
Xing, W.Q., Cheng, Y., Yang, L.L., Wang, W.G., 2024. Variation in canopy conductance of Cunninghamia lanceolata forest and its response to environmental factors after an extreme rainfall event. Hydrological Processes 38(3), e15121. https://doi.org/10.1002/hyp.15121.
|
| [55] |
Xu, F., Zhao, L.L., Jia, Y.W., Niu, C.W., Liu, X.L., Liu, H.Y., 2022. Evaluation of water conservation function of Beijiang River basin in Nanling Mountains, China, based on WEP-L model. Ecol. Indic. 134, 108383. https://doi.org/10.1016/j.ecolind.2021.108383.
|
| [56] |
Yu, Z.W., Guo, X.Y., Zeng, Y.X., Koga, M., Vejre, H., 2018. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou City, China. Urban Forestry & Urban Greening 29, 113-121. https://doi.org/10.1016/j.ufug.2017.11.008.
|
| [57] |
Zhang, B., Li, W.H., Xie, G.D., Xiao, Y., 2009. Water conservation function and its measurement methods of forest ecosystem. Chin. J. Ecol. 28(3), 529-534 (in Chinese).
|
| [58] |
Zhang, D., Liu, X.M., Zhang, L., Zhang, Q., Gan, R., Li, X.H., 2020. Attribution of evapotranspiration changes in humid regions of China from 1982 to 2016. J. Geophys. Res. Atmos. 125(13), e2020JD032404. https://doi.org/10.1029/2020jd032404.
|
| [59] |
Zhang, G.C., Wu, Y.P., Li, H.W., Yin, X.W., Chervan, A., Liu, S.G., Qiu, L.J., Zhao, F.B., Sun, P.C., Wang, W.K., 2024. Assessment framework of water conservation based on analytical modeling of ecohydrological processes. J. Hydrol. 630, 130646. https://doi.org/10.1016/j.jhydrol.2024.130646.
|
| [60] |
Zhang, M.F., Wei, X.H., 2021. Deforestation, forestation, and water supply. Science 371(6533), 990-991. https://doi.org/10.1126/science.abe7821.
|
| [61] |
Zhang, Q., Yang, Z.S., Hao, X.C., Yue, P., 2019. Conversion features of evapotranspiration responding to climate warming in transitional climate regions in northern China. Clim. Dyn. 52(7-8), 3891-3903. https://doi.org/10.1007/s00382-018-4364-3.
|
| [62] |
Zheng, C.W., Deng, X.H., Li, Z.X., Xue, J., Ma, L.B., He, J., Lu, S.X., Shao, J.X., Cai, S.Y., Zhao, P.Y., 2024. Analysis of the spatial and temporal evolution of water resources conservation and human activity intensity in the Hexi region of Gansu Province. J. Desert Res. 44(1), 189-200 (in Chinese). https://doi.org/10.7522/j.issn.1000-694X.2023.00081.
|
| [63] |
Zhou, G.Y., Wei, X.H., Chen, X.Z., Zhou, P., Liu, X.D., Xiao, Y., Sun, G., Scott, D.F., Zhou, S.Y.D., Han, L.S., et al., 2015. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 6, 5918. https://doi.org/10.1038/ncomms6918.
|