Volume 18 Issue 4
Dec.  2025
Turn off MathJax
Article Contents
HtayHtay Aung, Min-xi Zhang, Giuseppe Oliveto, Beniamino Onorati, Guo-liang Yu. 2025: Estimation of scour depth at a single non-submerged vertical spur dike under unidirectional currents. Water Science and Engineering, 18(4): 527-536. doi: 10.1016/j.wse.2025.09.002
Citation: HtayHtay Aung, Min-xi Zhang, Giuseppe Oliveto, Beniamino Onorati, Guo-liang Yu. 2025: Estimation of scour depth at a single non-submerged vertical spur dike under unidirectional currents. Water Science and Engineering, 18(4): 527-536. doi: 10.1016/j.wse.2025.09.002

Estimation of scour depth at a single non-submerged vertical spur dike under unidirectional currents

doi: 10.1016/j.wse.2025.09.002
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No. 52171268).

  • Received Date: 2025-03-22
  • Accepted Date: 2025-08-22
  • Available Online: 2025-12-03
  • Accurately estimating equilibrium scour depths at spur dikes remains challenging due to the complexity of scour around these structures. Scour critically threatens spur dikes built in river estuaries for enhancing navigability and preventing bank erosion. This study conducted 41 experiments to determine the approach flow velocity corresponding to scour initiation at a non-submerged spur dike, which enables prediction of equilibrium scour depth. The results showed that scour incipient velocity depended on spur geometry, approach flow characteristics, and sediment properties, rather than being a fixed value. A new formula for equilibrium scour depth prediction was proposed, based on the scour incipient velocity and the excess abutment Froude number, yielding a determination coefficient of 0.93. The formula demonstrated broader applicability and greater accuracy than previously reported formulas, with 98% of data within a ±25% error margin. The dimensionless sediment size was introduced to capture the effects of sediment size on scour, providing an alternative to the sediment coarseness ratio, which is challenging to replicate in laboratory settings. These findings offer valuable guidance for engineering design and protection of spur dikes under unidirectional flow.

     

  • loading
  • [1]
    Ahmad, M., 1953. Experiments on design and behavior of spur dikes. In: Proceedings of the International Hydraulics Convention. IAHR, Minneapolis, pp. 145-159.
    [2]
    Breusers, H.N.C., Nicollet, G., Shen, H.W., 1977. Local scour around cylindrical piers. J. Hydraul. Res. 15(3), 211-252. https://doi.org/10.1080/00221687709499645.
    [3]
    Buckingham, E., 1914. On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4(4), 345. https://doi.org/10.1103/PhysRev.4.345.
    [4]
    Buczynska, E., Szlauer-Lukaszewska, A., Czachorowski, S., Buczynski, P., 2018. Human impact on large Rivers: The influence of groynes of the River oder on larval assemblages of caddisflies (Trichoptera). Hydrobiologia 819(1), 177-195. https://doi.org/10.1007/s10750-018-3636-6.
    [5]
    Buffington, J.M., Montgomery, D.R., 1997. A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res. 33(8), 1993-2029. https://doi.org/10.1029/96WR03190.
    [6]
    Cardoso, A.H., Bettess, R., 1999. Effects of time and channel geometry on scour at bridge abutments. J. Hydraul. Eng. 125(4), 388-399. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:4(388).
    [7]
    Cardoso, A.H., Santos, J.S., Roca, M., 2002. Effects of flow intensity, obstacle alignment and cross-section geometry on scour at bridge abutments. Int. J. Sediment Res. 17(2), 102-113.
    [8]
    Chiew, Y.M., 1995. Mechanics of riprap failure at bridge piers. J. Hydraul. Eng. 121(9), 635-643. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:9(635).
    [9]
    Chung, S., Choi, D., Hwang, G., Chung, J., 2020. Effect of design factors for groynes on diversification of topography and restoration of ecosystems in straight and meandering streams. Ecol. Eng. 149, 105764. https://doi.org/10.1016/j.ecoleng.2020.105764.
    [10]
    Dey, S., 1999. Sediment threshold. Appl. Math. Model. 23(5), 399-417. https://doi.org/10.1016/S0307-904X(98)10081-1.
    [11]
    Dey, S., Barbhuiya, A.K. 2004. Clear-water scour at abutments in thinly armored beds. J. Hydraul. Eng. 130(7), 622-634. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(622).
    [12]
    Dey, S., Barbhuiya, A.K., 2005. Time variation of scour at abutments. J. Hydraul. Eng. 131(1), 11-23. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:1(11).
    [13]
    Diplas, P., Sutherland, A.J., 1988. Sampling techniques for gravel sized sediments. J. Hydraul. Eng. 114(5), 484-501. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:5(484).
    [14]
    Dong, B., Li, Z., Rahman, S.M.M., Vega, R. 2016. A hybrid model approach for forecasting future residential electricity consumption. Energy Build. 117, 341-351. https://doi.org/10.1016/j.enbuild.2015.09.033.
    [15]
    Dongol, D.M.S., 1993. Local Scour at Bridge Abutments. University of Auckland, Auckland.
    [16]
    Ezzeldin, M.M., Saafan, T.A., Rageh, O.S., Nejm, L.M., 2007. Local scour around spur dikes. In: Proceedings of the Eleventh International Water Technology Conference. IWTC11, Sharm El-Sheikh, pp. 779-795.
    [17]
    Fael, C.M.S., Simarro-Grande, G., Martin-Vide, J.P., Cardoso, A.H., 2006. Local scour at vertical-wall abutments under clear-water flow conditions. Water Resour. Res. 42(10), W10408. https://doi.org/10.1029/2005WR004443.
    [18]
    Froehlich, D.C., 1989. Local scour at bridge abutments. In: Proceedings of the 1988 National Conference on Hydraulic Engineering. ASCE, New York, pp. 534-539.
    [19]
    Gao, D., Pasada, L., Nordin, C.F., 1993. Pier Scour Equations Used in the People's Republic of China. Federal Highway Administration, Washington DC.
    [20]
    Gao, Y., Yang, H., Wang, L., Zhao, M., 2022. Three-dimensional numerical investigation on flow behaviors around a diversion dike. Phys. Fluids 34(12), 125119. https://doi.org/10.1063/5.0124003.
    [21]
    Garde, R.J., Subramanya, K., Nambudripad, K.D., 1961. Study of scour around spur-dikes. J. Hydraul. Eng. 87(6), 23-37. https://doi.org/10.1061/JYCEAJ.000066.
    [22]
    Gaudio, R., De Bartolo, S., Tafarojnoruz, A., 2013. Sensitivity analysis of bridge pier scour depth predictive formulae. J. Hydroinform.15(3), 939-951. https://doi.org/10.2166/hydro.2013.036.
    [23]
    Gill, M.A., 1972. Erosion of sand beds around spur dikes. J. Hydraul. Eng. 98(9), 1587-1602. https://doi.org/10.1061/JYCEAJ.0003406.
    [24]
    Hager, W.H., Oliveto, G., 2002. Shields' entrainment criterion in bridge hydraulics. J. Hydraul. Eng. 128(5), 538-542. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(538).
    [25]
    Hu, K., Ding, P., Wang, Z., Yang, S., 2009. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China. J. Mar. Syst. 77(1-2), 114-136. https://doi.org/10.1016/j.jmarsys.2008.11.014.
    [26]
    Husain, D., Quraishi, A.A., Alibrahim, A., 1998. Local scour at bridge abutments. J. King Abdulaziz Univ. Eng. Sci. 10(1), 141-153.
    [27]
    Kumar, A., Prabhakar, A.K., 2025. Comparison of stacking, boosting, generalized linear, and neural network models for estimating scour depth around spur-dykes. Iran. J. Sci. Technol. Trans. Civ. Eng. 1-16. https://doi.org/10.1007/s40996-025-01769-7.
    [28]
    Lee, S., Sturm, T.W., 2009. Effect of sediment size scaling on physical modeling of bridge pier scour. J. Hydraul. Eng. 135(10), 793-802. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000091.
    [29]
    Lehotsky, M., Horackova, S., Rusnak, M., Stefanicka, T., Klen, J., 2024. Morphologic adjustment of a river reach with groynes to channel bypassing. Pure Appl. Geophys. 181(3), 977-1001. https://doi.org/10.1007/s00024-024-03433-z.
    [30]
    Lim, S.Y., 1997. Equilibrium clear-water scour around an abutment. J. Hydraul. Eng. 123(3), 237-243. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:3(237).
    [31]
    Liu, H.K., Chang, F.M., Skinner, M.M., 1961. Effect of Bridge Constriction on Scour and Backwater. Colorado State University, Fort Collins.
    [32]
    Malik, S., Pal, S.C., 2019. Impact of groyne on channel morphology and sedimentology in an ephemeral alluvial river of Bengal Basin. Environ. Earth Sci. 78(22), 631. https://doi.org/10.1007/s12665-019-8642-0.
    [33]
    Melville, B.W., 1992. Local scour at bridge abutments. J. Hydraul. Eng. 118(4), 615-631. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:4(615).
    [34]
    Melville, B.M., 1997. Pier and abutment scour: Integrated approach. J. Hydraul. Eng. 123(2), 125-136. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(125).
    [35]
    Misuriya, G., Eldho, T.I., Mazumder, B.S., 2023. Estimation of the local scour around the cylindrical pier over the gravel bed for a low coarseness ratio. Int. J. River Basin Manag. 22(4), 487-497. https://doi.org/10.1080/15715124.2023.2187400.
    [36]
    Nagy, H.M., 2004. Maximum depth of local scour near emerged vertical wall spur dike. Alex. Eng. J. 43(6), 819-829.
    [37]
    Nasrollahi, A., Ghodsian, M., Neyshabouri, S.A.S., 2008. Local scour at permeable spur dikes. J. Appl. Sci. 8, 3398-3406.
    [38]
    Ozyaman, C., Yerdelen, C., Eris, E., Daneshfaraz, R., 2021. Experimental investigation of scouring around a single spur under clear water conditions. Water Supply 22(3), 3484-3497. https://doi.org/10.2166/ws.2021.389.
    [39]
    Pandey, M., Ahmad, Z., Sharma, P.K., 2016. Estimation of maximum scour depth near a spur dike. Can. J. Civ. Eng. 43(3), 270-278. https://doi.org/10.1139/cjce-2015-0280.
    [40]
    Pandey, M., Ahmad, Z., Sharma, P.K., 2018. Scour around impermeable spur dikes: A review. ISH J. Hydraul. Eng. 24(1), 25-44. https://doi.org/10.1080/09715010.2017.1342571.
    [41]
    Pandey, M., Lam, W.H., Cui, Y., Khan, M.A., Singh, U.K., Ahmad, Z., 2019. Scour around spur dike in sand-gravel mixture bed. Water 11(7), 1417. https://doi.org/10.3390/w11071417.
    [42]
    Pandey, M., Valyrakis, M., Qi, M., Sharma, A., Lodhi, A.S., 2020. Experimental assessment and prediction of temporal scour depth around a spur dike. Int. J. Sediment Res. 36(1), 17-28. https://doi.org/10.1016/j.ijsrc.2020.03.015.
    [43]
    Pandey, M., Jamei, M., Karbasi, M., Ahmadianfar, I., Chu, X., 2021. Prediction of maximum scour depth near spur dikes in uniform bed sediment using stacked generalization ensemble tree-based frameworks. J. Irrigat. Drain. Eng. 147(11), 04021050. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001610.
    [44]
    Pandey, M., Jamei, M., Ahmadianfar, I., Karbasi, M., Lodhi, A.S., Chu, X., 2022. Assessment of scouring around spur dike in cohesive sediment mixtures: A comparative study on three rigorous machine learning models. J. Hydrol. 606, 127330. https://doi.org/10.1016/j.jhydrol.2021.127330.
    [45]
    Prakash, H., 2010. Velocity approach for incipient motion. ISH J. Hydraul. Eng. 16(2), 47-58.
    [46]
    Rajaratnam, N., Nwachukwu, B.A., 1983. Erosion near groyne-like structures. J. Hydraul. Res. 21(4), 277-287. https://doi.org/10.1080/00221688309499434.
    [47]
    Singh, B., Minocha, V.K., 2024. Comparative study of machine learning techniques for prediction of scour depth around spur dikes. In: Proceedings of the World Environmental and Water Resources Congress. ASCE, Milwaukee, pp. 635-651. https://doi.org/10.1061/9780784485477.056.
    [48]
    Singh, U.K., Jamei, M., Karbasi, M., Malik, A., Pandey, M., 2022. Application of a modern multi-level ensemble approach for the estimation of critical shear stress in cohesive sediment mixture. J. Hydrol. 607, 127549. https://doi.org/10.1016/j.jhydrol.2022.127549.
    [49]
    Sun, X., Bi, Y., Karami, H., Naini, S., Band, S.S., Mosavi, A., 2021. Hybrid model of support vector regression and fruitfly optimization algorithm for predicting ski-jump spillway scour geometry. Eng. Appl. Comput. Fluid Mech. 15(1), 272-291. https://doi.org/10.1080/19942060.2020.1869102.
    [50]
    Tabassum, R., Guguloth, S., Gondu, V.R. Zakwan, M., 2024. Machine learning-based prediction of scour depth evolution around spur dikes. J. Hydroinform. 6(11), 2815-2836. https://doi.org/10.2166/hydro.2024.160.
    [51]
    Ten Brinke, W.B.M., Schulze, F.H., van Der Veer, P., 2004. Sand exchange between groyne-field beaches and the navigation channel of the Dutch Rhine: The impact of navigation versus river flow. River Res. Appl. 20(8), 899-928. https://doi.org/10.1002/rra.809.
    [52]
    Yossef, M.F.M., de Vriend, H.J., 2011. Flow details near river groynes: Experimental investigation. J. Hydraul. Eng. 137(5), 504-516. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000326.
    [53]
    Zhan, J.M., Wai, W.O., Li, Y.T., Hu, W.Q., Luo, Y.Y., 2024. Velocity field and turbulence structure of the meandering flow produced by alternating deflectors. Sci. Rep. 14(1), 7730. https://doi.org/10.1038/s41598-024-58264-8.
    [54]
    Zhang, H., Nakagawa, H., 2008. Scour around spur dyke: Recent advances and future researches. In: Annuals of the Disaster Prevention Research Institute. Kyoto University, Kyoto.
    [55]
    Zhang, L., Wang, P., Yang, W., Zuo, W., Gu, X., Yang, X., 2018. Geometric characteristics of spur dike scour under clear-water scour conditions. Water 10(6), 680. https://doi.org/10.3390/w10060680.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (0) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return