Volume 18 Issue 4
Dec.  2025
Turn off MathJax
Article Contents
Md. Mamun Rana, Khalid Mahmud, Atiqur Rahman, M.M.R. Jahangir, M.G. Mostofa Amin. 2025: Irrigation and percolation management for reducing water footprint and nutrient leaching in rice-based ecosystems. Water Science and Engineering, 18(4): 454-463. doi: 10.1016/j.wse.2025.09.004
Citation: Md. Mamun Rana, Khalid Mahmud, Atiqur Rahman, M.M.R. Jahangir, M.G. Mostofa Amin. 2025: Irrigation and percolation management for reducing water footprint and nutrient leaching in rice-based ecosystems. Water Science and Engineering, 18(4): 454-463. doi: 10.1016/j.wse.2025.09.004

Irrigation and percolation management for reducing water footprint and nutrient leaching in rice-based ecosystems

doi: 10.1016/j.wse.2025.09.004
Funds:

This work was supported by the Bangladesh Agricultural University (Grant No. 2021/80/BAU).

  • Received Date: 2024-12-20
  • Accepted Date: 2025-09-02
  • Available Online: 2025-12-03
  • Inefficient water management can lead to water and nutrient losses in rice cultivation, causing economic and environmental challenges. This study evaluated the effects of irrigation and percolation management on nutrient leaching, rice yield, and water footprint using field lysimeters during the Aman (wet) and Boro (dry) seasons in Mymensingh, Bangladesh. Irrigation treatments included zero ponding (saturated soil), 2-cm ponding, and 5-cm ponding, while percolation management involved uncontrolled percolation, reuse of percolated water, and no percolation. Leachate samples collected every 10 d were analyzed for mineral nitrogen and available phosphorus, with yield and water use measurements. The zero ponding treatment yielded lower water footprints in the Aman and Boro seasons (1 224 L/kg and 1 289 L/kg, respectively) than the 2-cm ponding (1 252 L/kg and 1 662 L/kg, respectively) and 5-cm ponding (1 360 L/kg and 1 953 L/kg, respectively) treatments, with comparable grain yields. The no-percolation treatment increased tiller count in the Aman season but had no significant effect in the Boro season. The uncontrolled percolation treatment resulted in total percolated water depths of 10-13 cm and 20-21 cm in the Aman and Boro seasons, respectively. The no-percolation treatment led to lower water footprints (1 224-1 289 L/kg) than the uncontrolled percolation (1 409-1 706 L/kg) and percolation-reuse (1 448-1 516 L/kg) treatments. Percolation reuse reduced phosphorus leaching in the Aman season, lowered NH+4-N leaching late in the Boro season, and decreased NO-3-N leaching in multiple events compared to uncontrolled percolation. These findings inform improved water and nutrient management strategies in rice ecosystems for enhanced sustainability.

     

  • loading
  • [1]
    Akter, M., Deroo, H., Kamal, A.M., Kader, M.A., Verhoeven, E., Decock, C., Boeckx, P., Sleutel, S., 2018. Impact of irrigation management on paddy soil N supply and depth distribution of abiotic drivers. Agric. Ecosyst. Environ. 261, 12-24. https://doi.org/10.1016/j.agee.2018.03.015.
    [2]
    Alam, M.J., Humphreys, E., Sarkar, M.A., 2017. Intensification and diversification increase land and water productivity and profitability of rice-based cropping systems on the High Ganges River Floodplain of Bangladesh. Field Crops Res. 209, 10-26. https://doi.org/10.1016/j.fcr.2017.04.008.
    [3]
    Alauddin, M., Sarker, M.A., Islam, Z., Tisdell, C., 2020. Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations. Land Use Policy 91, 104430. https://doi.org/10.1016/j.landusepol.2019.104430.
    [4]
    Amgain, N.R., Rabbany, A., Galindo, S., Bhadha, J.H., 2021. Effects of water management strategies and nitrogen fertilizer on rice yield cultivated on histosols. J. Rice Res. Dev. 4(1), 331-338. https://doi.org/10.36959/973/431.
    [5]
    Amin, M.G.M., Talukder, M.S.U., Sarkar, M.A.A., 2003. Impact of tubewell electrification and water management practices on Boro rice cultivation. J. Bangladesh Agril. Univ. 1(1), 105-112. https://doi.org/10.22004/ag.econ.276313.
    [6]
    Amin, M.G.M., Akter, A., Jahangir, M.M.R., Ahmed, T., 2021. Leaching and runoff potential of nutrient and water losses in rice field as affected by alternate wetting and drying irrigation. J. Environ. Manag. 297, 113402. https://doi.org/10.1016/j.jenvman.2021.113402.
    [7]
    Anbumozhi, V., Yamaji, E., Tabuchi, T., 1998. Rice crop growth and yields as influenced by changes in ponding water depth, water regime and fertigation level. Agric. Water Manag. 37(3), 241-253. https://doi.org/10.1016/S0378-3774(98)00041-9.
    [8]
    Bai, Z., Huang, J., Zhu, L., Cao, X., Zhu, C., Zhong, C., Jin, Q., Zhang, J., 2020. Effects of N application strategies on N leaching loss in paddy soil and N use characteristics in different super hybrid rice cultivars. Paddy Water Environ. 18, 27-41. https://doi.org/10.1007/s10333-019-00762-x.
    [9]
    BBS, 2019. Statistical Yearbook Bangladesh. Ministry of Planning, Government of the People’s Republic of Bangladesh, Sher-E-Bangla Nagar.
    [10]
    Bouman, B.A.M., Tuong, T.P., 2001. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 49(1), 11-30. https://doi.org/10.1016/S0378-3774(00)00128-1.
    [11]
    Cao, X.C., Wu, L.L., Lu, R.H., Zhu, L.F., Zhang, J.H., Jin, Q.Y., 2021. Irrigation and fertilization management to optimize rice yield, water productivity and nitrogen recovery efficiency. Irrig. Sci. 39, 235-249. https://doi.org/10.1007/s00271-020-00700-4.
    [12]
    Carrijo, D.R., Lundy, M.E., Linquist, B.A., 2017. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Res. 203, 173-180. https://doi.org/10.1016/j.fcr.2016.12.002.
    [13]
    Chapagain, A.K., Hoekstra, A.Y., 2011. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 70(4), 749-758. https://doi.org/10.1016/j.fcr.2016.12.002.
    [14]
    Chen, K., Yu, S.E., Ma, T., Ding, J., He, P., Dai, Y., Zeng, G., 2022. Effects of water and nitrogen management on water productivity, nitrogen use efficiency and leaching loss in rice paddies. Water 14(10), 1596. https://doi.org/10.3390/w14101596.
    [15]
    Choudhury, B.U., Bouman, B.A.M., Singh, A.K., 2007. Yield and water productivity of rice-wheat on raised beds at New Delhi, India. Field Crops Res. 100(2-3), 229-239. https://doi.org/10.1016/j.fcr.2006.07.009.
    [16]
    Colak, Y.B., 2021. Comparison of aerobic rice cultivation using drip systems with conventional flooding. J. Agric. Sci. 159(7-8), 544-556. https://doi.org/10.1017/S0021859621000824.
    [17]
    Cui, N., Cai, M., Zhang, X., Abdelhafez, A.A., Zhou, L., Sun, H., Chen, G., Zou, G., Zhou, S., 2020. Runoff loss of nitrogen and phosphorus from a rice paddy field in the east of China: Effects of long-term chemical N fertilizer and organic manure applications. Glob. Ecol. Conserv. 22, e01011. https://doi.org/10.1016/j.gecco.2020.e01011.
    [18]
    Dabrowska, D., Nowak, A., Soltysiak, M., Biniecka, P., Nourani, V., Wasilkowski, D., 2022. In situ lysimeter experiment of leaching pollutants from municipal waste with physicochemical status and microbiome condition. J. Hydrol. 613, 128309. https://doi.org/10.1016/j.jhydrol.2022.128309.
    [19]
    Djaman, K., Mel, V.C., Diop, L., Sow, A., El-Namaky, R., Manneh, B., Saito, K., Futakuchi, K., Irmak, S., 2018. Effects of alternate wetting and drying irrigation regime and nitrogen fertilizer on yield and nitrogen use efficiency of irrigated rice in the Sahel. Water 10(6), 711. https://doi.org/10.3390/w10060711.
    [20]
    Duttarganvi, S., Kumar, R.M., Desai, B.K., Pujari, B.T., Tirupataiah, K., Koppalkar, B.G., Umesh, M.R., Naik, M.K., Reddy, K.Y., 2016. Influence of establishment methods, irrigation water levels and weed-management practices on growth and yield of rice (Oryza sativa). Indian J. Agron. 61(2), 174-178. https://doi.org/10.59797/ija.v61i2.4365.
    [21]
    Hou, Y., Wei, S., Ma, W., Roelcke, M., Nieder, R., Shi, S., Wu, J., Zhang, F., 2018. Changes in nitrogen and phosphorus flows and losses in agricultural systems of three megacities of China, 1990-2014. Resour. Conserv. Recycl. 139, 64-75. https://doi.org/10.1016/j.resconrec.2018.07.030.
    [22]
    Howell, K.R., Shrestha, P., Dodd, I.C., 2015. Alternate wetting and drying irrigation maintained rice yields despite half the irrigation volume, but is currently unlikely to be adopted by smallholder lowland rice farmers in Nepal. Food Energy Secur. 4(2), 144-157. https://doi.org/10.1002/fes3.58.
    [23]
    Hua, L., Liu, J., Zhai, L., Xi, B., Zhang, F., Wang, H., Liu, H., Chen, A., Fu, B., 2017. Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices. Agric. Ecosyst. Environ. 245, 112-123. https://doi.org/10.1016/j.agee.2017.05.015.
    [24]
    Islam, M.T., Amin, M.G.M., Islam, D., Jahan, N., Rahman, M., 2024. Partitioning water footprints of rice for assessing their implications in the face of climate change in Bangladesh. Paddy Water Environ. 22, 661-674. https://doi.org/10.1007/s10333-024-00992-8.
    [25]
    Islam, S.M.M., Gaihre, Y.K., Shah, A.L., Singh, U., Sarkar, M.I., Satter, M.A., Sanabria, J., Biswas, J.C., 2016. Rice yields and nitrogen use efficiency with different fertilizers and water management under intensive lowland rice cropping systems in Bangladesh. Nutr. Cycl. Agroecosys. 106, 143-156. https://doi.org/10.1007/s10705-016-9795-9.
    [26]
    Jabran, K., Ullah, E., Hussain, M., Farooq, M., Haider, N., Chauhan, B.S., 2015. Water saving, water productivity and yield outputs of fine-grain rice cultivars under conventional and water-saving rice production systems. Exp. Agric. 51(4), 567-581. https://doi.org/10.1017/S0014479714000477.
    [27]
    Ju, X.T., Xing, G.X., Chen, X.P., Zhang, S.L., Zhang, L.J., Liu, X.J., Cui, Z.L., Yin, B., Christie, P., Zhu, Z.L., et al., 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. 106(9), 3041-3046. https://doi.org/10.1073/pnas.081341710.
    [28]
    Ladha, J.K., Pathak, H., Krupnik, J.T., Six, J., van Kessel, C., 2005. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 87, 85-156. https://doi.org/10.1016/S0065-2113(05)87003-8.
    [29]
    LaHue, G.T., Linquist, B.A., 2021. The contribution of percolation to water balances in water-seeded rice systems. Agric. Water Manag. 243, 106445. https://doi.org/10.1016/j.agwat.2020.106445.
    [30]
    Liang, H., Gao, S., Qi, Z., Hu, K., Xu, J., 2021. Leaching loss of dissolved organic nitrogen from cropland ecosystems. Environ. Rev. 29(1), 23-30. https://doi.org/10.1139/er-2020-0059.
    [31]
    Liu, J., Liu, H.B., Liu, R.L., Amin, M.G.M., Zhai, L.M., Lu, H.M., Wang, H.Y., Zhang, X.B., Zhang, Y.T., Zhao, Y., et al., 2018. Water quality in irrigated paddy systems. In: Ondrasek G. (Ed.), Irrigation in Agroecosystems. InTechOpen, London. https://doi.org/10.5772/intechopen.77339.
    [32]
    Mahmud, K., Amin, M.G.M., Ahmed, U., Chowdhury, A.I., Hasan, M.M., Rahman, M.N., Khan, M.H., 2021. Status and sustainability challenges of agricultural water usage in Bangladesh. CIGR J. 23(3), 84-100.
    [33]
    Mainuddin, M., Maniruzzaman, M.D., Alam, M.M., Mojid, M.A., Schmidt, E.J., Islam, M.T., Scobie, M., 2020. Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in Northwest Bangladesh. Agric. Water Manag. 240, 106294. https://doi.org/10.1016/j.agwat.2020.106294.
    [34]
    Maneepitak, S., Ullah, H., Paothong, K., Kachenchart, B., Datta, A., Shrestha, R.P., 2019. Effect of water and rice straw management practices on yield and water productivity of irrigated lowland rice in the Central Plain of Thailand. Agric. Water Manag. 211, 89-97. https://doi.org/10.1016/j.agwat.2018.09.041.
    [35]
    Meissner, R., Rupp, H., Haselow, L., 2020. Chapter 7 - Use of lysimeters for monitoring soil water balance parameters and nutrient leaching. In: Prasad, M.N.V, Pietrzykowski, M. (Eds.), Climate Change and Soil Interactions. Elsevier, Amsterdam, pp. 171-205. https://doi.org/10.1016/B978-0-12-818032-7.00007-2.
    [36]
    Meng, F., Olesen, J.E., Sun, X., Wu, W., 2014. Inorganic nitrogen leaching from organic and conventional rice production on a newly claimed calciustoll in Central Asia. PLoS One 9(5), e98138. https://doi.org/10.1371/journal.pone.0098138.
    [37]
    Norton, G.J., Shafaei, M., Travis, A.J., Deacon, C.M., Danku, J., Pond, D., Cochrane, N., Lockhart, K., Salt, D., Zhang, H., et al., 2017. Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. Field Crops Res. 205, 1-13. https://doi.org/10.1371/journal.pone.0098138.
    [38]
    Pala, F., Mennan, H., Jabran, K., 2023. Competitive ability of imidazolinone-tolerant rice (cv. Luna) with different weedy rice (Oryza sativa f. spontanea) biotypes. Phytoparasitica 51(5), 1161-1172. https://doi.org/10.1007/s12600-023-01108-4.
    [39]
    Paul, S.K., Sasaki, C., Matsuyama, N., Kato, K., 2011. Effect of percolation pattern on yields and accumulation of copper and cadmium in rice plants with soil dressing models. J. Environ. Sci. Eng. 5(11), 1464-1473.
    [40]
    Peng, S., Tang, Q., Zou, Y., 2009. Current status and challenges of rice production in China. Plant Prod. Sci. 12(1), 3-8. https://doi.org/10.1626/pps.12.3.
    [41]
    Qi, D., Wu, Q., Zhu, J., 2020. Nitrogen and phosphorus losses from paddy fields and the yield of rice with different water and nitrogen management practices. Sci. Rep. 10, 9734. https://doi.org/10.1038/s41598-020-66757-5.
    [42]
    Rahman, A., Amin, M.G.M., 2023. Soil hydraulic properties and field-scale hydrology as affected by land management options. Sains Tanah J. Soil Sci. Climatol. 20(1), 124-139. https://doi.org/10.20961/stjssa.v20i1.70504.
    [43]
    Rahman, M.M., Hasan, S., Ahmed, M.R., Adham, A.K., 2022. Recycling deep percolated water in continuously flooding irrigated rice fields to mitigate water scarcity. Paddy Water Environ. 20(4), 449-466. https://doi.org/10.1007/s10333-022-00904-8.
    [44]
    Reddy, K.R., Patrick, W.H., Lindau, C.W., 1989. Nitrification-denitrification at the plant root-sediment interface in wetlands. Limnol. Oceanogr. 34(6), 1004-1013. https://doi.org/10.4319/lo.1989.34.6.1004.
    [45]
    Santiago-Arenas, R., Dhakal, S., Ullah, H., Agarwal, A., Datta, A., 2021. Seeding, nitrogen, and irrigation management optimize rice water and nitrogen use efficiency. Nutr. Cycl. Agroecosyst. 120(3), 325-341. https://doi.org/10.1007/s10705-021-10153-6.
    [46]
    Sarkar, A.A., Ali, M.H., 2012. Irrigation management for optimizing rice yield and nitrate leaching. Bangladesh J. Nucl. Agric. 23, 63-75.
    [47]
    Sarker, M.A.R., Alam, K., Gow, J., 2019. Performance of rain-fed Aman rice yield in Bangladesh in the presence of climate change. Renew. Agric. Food Syst. 34(4), 304-312. https://doi.org/10.1017/S1742170517000473.
    [48]
    Schmidt, C.D.S., Pereira, F.A.C., Oliveira, A.S., Junior, J.F.G., Vellame, L.M., 2013. Design, installation, and calibration of a weighing lysimeter for crop evapotranspiration studies. Water Resour. Irri. Manag. 2(2), 77-85.
    [49]
    Shariot-Ullah, M., Mahbub, S.M.M., Karim, M.R., Mousumi, K.A., Amin, M.G.M., 2023. Effects of manure application timing on rice water productivity, nutrient leaching, and runoff under monsoon climate. Paddy Water Environ. 21, 263-274. https://doi.org/10.1007/s10333-023-00927-9.
    [50]
    Sudhir-Yadav, Humphreys, E., Kukal, S.S., Gurjeet, G., Rangarajan, R., 2011. Effect of water management on dry seeded and puddled transplanted rice: Part 2: Water balance and water productivity. Field Crops Res. 120(1), 123-132. https://doi.org/10.1016/j.fcr.2010.09.003.
    [51]
    Sun, X., Liang, X., Zhang, F., Fu, C., 2016. GIS-based upscaling estimation of nutrient runoff losses from rice paddy fields to a regional level. J. Environ. Qual. 45(6), 1865-1873. https://doi.org/10.2134/jeq2016.05.0181.
    [52]
    Tian, Y.H., Yin, L.Z., Yin, S.X., Zhu, Z.L., 2007. Nitrogen runoff and leaching losses during rice-wheat rotations in Taihu Lake region, China. Pedosphere 17(4), 445-456. https://doi.org/10.1016/S1002-0160(07)60054-X.
    [53]
    Vocasek, F.F., Peterson, G.A., 2015. Water security for agriculture: Introduction to the water security task force symposium. Agronomy J. 107(4), 1524-1525. https://doi.org/10.2134/agronj15.0909.
    [54]
    Wang, X., Suo, Y., Feng, Y., Shohag, M., Gao, J., et al., 2011. Recovery of 15N-labeled urea and soil nitrogen dynamics as affected by irrigation management and nitrogen application rate in a double rice cropping system. Plant Soil 343, 195-208. https://doi.org/10.1007/s11104-010-0648-z.
    [55]
    Watanabe, F.S., Olsen, S.R., 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soils. Soil. Sci. Soc. Am. J. 29(6), 677-678. https://doi.org/10.2136/sssaj1965.03615995002900060025x.
    [56]
    Xie, H., Longuevergne, L., Ringler, C., Scanlon, B.R., 2020. Integrating groundwater irrigation into hydrological simulation of India: Case of improving model representation of anthropogenic water use impact using GRACE. J. Hydrol. Reg. Stud. 29, 100681. https://doi.org/10.1016/j.ejrh.2020.100681.
    [57]
    Xu, J., Wang, X., Ding, Y., Mu, Q., Cai, H., Ma, C., Saddique, Q., 2020. Effects of irrigation and nitrogen fertilization management on crop yields and long-term dynamic characteristics of water and nitrogen transport at deep soil depths. Soil Tillage Res. 198, 104536. https://doi.org/10.1016/j.still.2019.104536.
    [58]
    Yang, C., Yang, L., Yang, Y., Ouyang, Z., 2004. Rice root growth and nutrient uptake influenced by organic manure in continuously and alternately flooded paddy soils. Agric. Water Manag. 70(1), 67-81. https://doi.org/10.1016/j.agwat.2004.05.003.
    [59]
    Zhang, D., Wang, H.Y., Pan, J.T., Luo, J.F., Liu, J., Gu, B.J., Liu, S., Zhai, L.M., Lindsey, S., Zhang, Y.T., et al., 2018. Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agric. Ecosyst. Environ. 265, 8-14. https://doi.org/10.1016/j.agee.2018.05.023.
    [60]
    Zheng, C., Zhang, Z., Wu, Y., Mwiya, R., 2019. Response of vertical migration and leaching of nitrogen in percolation water of paddy fields under water-saving irrigation and straw return conditions. Water 11(4), 868. https://doi.org/10.3390/w11040868.
    [61]
    Zhuang, Y., Zhang, L., Li, S., Liu, H., Zhai, L., Zhou, F., Ye, Y., Ruan, S., Wen, W., 2019. Effects and potential of water-saving irrigation for rice production in China. Agric. Water Manag. 217, 374-382. https://doi.org/10.1016/j.agwat.2019.03.010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (0) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return