The parameter
X of the Muskingum method is a physical parameter that reflects the flood peak attenuation and hydrograph shape flattening of a diffusion wave in motion. In this paper, the historic process that hydrologists have undergone to find a physical explanation of this parameter is briefly discussed. Based on the fact that the Muskingum method is the second-order accuracy difference solution to the diffusion wave equation, its numerical stability condition is analyzed, and a conclusion is drawn:
X<=0.5 is the uniform condition satisfying the demands for its physical meaning and numerical stability. It is also pointed out that the methods that regard the sum of squares of differences between the calculated and observed discharges or stages as the objective function and the routing coefficients
C0 , C1 and
C2 of the Muskingum method as the optimization parameters cannot guarantee the physical meaning of
X.