Citation: | Di Liu, Yu-zhongbo, Lv haishen. 2010: Data assimilation using support vector machines and ensemble kalman filter for multi-layer soil moisture prediction. Water Science and Engineering, 3(4): 361-377. doi: 10.3882/j.issn.1674-2370.2010.04.001 |
Ahmad, S., Kalra, A., and Stephen, H. 2010. Estimating soil moisture using remote sensing data: A machine learning approach. Advances in Water Resources, 33(1), 69-80. [ doi: 10.1016/j.advwatres.2009.10.008]
|
Al-Hamdan, O. Z. and Cruise, J. F. 2010. Soil moisture profile development from surface observations by principle of maximum entropy. Journal of Hydrologic Engineering, 15(5), 327-337. [doi:10.1061/ (ASCE)HE.1943-5584.0000196]
|
Asefa, T., and Kemblowski, M. W. 2002. Support vector machines approximation of flow and transport models in initial groundwater contamination network design. EOS Transaction American Geophysical Union, 83. Washington: American Geophysical Union.
|
Asefa, T., Kemblowski, M. W., Urroz, G., McKee, M., and Khalil, A. 2004. Support vectors-based groundwater head observation networks design. Water Resources Research, 40, W11509. [doi:10.1029/ 2004WR003304]
|
Asefa, T., Kemblowski, M., McKee, M., and Khalil, A. 2006. Multi-time scale stream flow predictions: The support vector machines approach. Journal of Hydrology, 318(1-4), 7-16. [doi:10.1016/j.jhydrol.2005. 06.001]
|
Bertino, L., Evensen, G., and Wackernagel, H. 2002. Combining geostatistics and Kalman filtering for data assimilation in an estuarine system. Inverse Problems, 18(1), 1-23. [doi: 10.1088/0266-5611/18/1/301]
|
Chen, S. T., Yu, P. S., and Tang, Y. H. 2010. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology, 385(1-4), 13-22. [doi:10.1016/j.jhydrol. 2010.01.021]
|
Cristianini, N., and Shaw-Taylor, J. 2000. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. New York: Cambridge University Press.
|
Crow, W. T., and Wood, E. F. 2003. The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Advances in Water Resources, 26(2), 137-149. [doi: 10.1.1.10.9364]
|
Daly, E., and Porporato, A. 2005. A review of soil moisture dynamics: From rainfall infiltration to ecosystem response. Environmental Engineering Science, 22(1), 9-24. [doi: 10.1089/ees.2005.22.9]
|
Dibike, B. Y., Velickov, S., Solomatine, D., and Abbott, B. M. 2001. Model induction with support vector machines: introduction and applications. Journal of Computing in Civil Engineering, 15(3), 208-216. [doi: 10.1061/(ASCE)0887-3801(2001)15:3(208)]
|
Drecourt, J. P. 2003. Kalman filtering in hydrological modeling. DAIHM technical report. Denmark: DHI Water and Environment.
|
El-Sebakhy, E. A. 2009. Forecasting PVT properties of crude oil systems based on support vector machines modeling scheme. Journal of Petroleum Science and Engineering, 64(1-4), 25-34. [doi:10.1016/j.petrol. 2008.12.006]
|
Evensen, G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using monte-carlo methods to forecast error statistics. Journal of Geophysical Research, 99(C5), 10143-10162. [doi: 10.1029/94JC00572]
|
Evensen, G. 2002. Sequential data assimilation for nonlinear dynamics: The ensemble Kalman filter. Ocean Forecasting: Conceptual Basis and Applications,101-120. Berlin: Springer-Verlag.
|
Gill, M. K., Kaheil, Y. H., Khalil, A., McKee, M., and Bastidas, L. 2006a. Multi-objective particle swarm optimization for parameter estimation in hydrology. Water Resources Research, 42, W07417. [doi: 10.1029/2005WR004528]
|
Gill, M. K., Asefa, T., Kemblowski, M. W., and McKee, M. 2006b. Soil moisture prediction using support vector machines. Journal of American Water Resources Association, 42(4), 1033-1046. [doi:10.1111/j. 1752-1688.2006.tb04512.x]
|
Gill, M. K., and McKee, M. 2007. Soil moisture data assimilation using support vector machines and ensemble Kalman filter. Journal of American Water Resources Association, 43(4), 1004-1015. [doi: 10.1111/j.1752-1688.2007.00082.x]
|
Islam, S. I., and Engman, E. T. 1996. Why bother for 0.0001% of earth’s water? Challenges for soil moisture research. EOS Transaction American Geophysical Union, 77(43), 420.
|
Johns, C. J., and Mandel, J. 2008. A two-stage ensemble Kalman filter for smooth data assimilation. Environmental and Ecological Statistics, 15(1), 101-110. [doi: 10.1007/s10651-007-0033-0]
|
Kaheil, Y. H., Gill, M. K., McKee, M., Bastidas, L. A., and Rosero, E. 2008. Downscaling and assimilation of surface soil moisture using ground truth measurements. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1375-1384. [doi: 10.1109/TGRS.2008.916086]
|
Kalman, R. E. 1960. A new approach to linear filtering and prediction problem. Transactions of the AMSE-Journal of Basic Engineering, 82(D), 35-45.
|
Kalra, A., and Ahmad, S. 2009. Using oceanic-atmospheric oscillations for long lead time stream?ow forecasting. Water Resources Research, 45, W03413. [doi: 10.1029/2008WR006855]
|
Khalil, A., Gill, M. K., and McKee, M. 2005. New Applications for Information Fusion and soil moisture forecasting. 8th International Conference on Information Fusion, 1622-1628. [doi:10.1109/ICIF.2005. 1592050]
|
Kumar, S. V., Reichle, R. H., Peters-Lidard, C. D., Koster, R. D., Zhan, X. W., Crow, W. T., Eylander, J. B., and Houser, P. R. 2008. A land surface data assimilation framework using the land information system: Description and applications. Advances in Water Resources, 31(11), 1419-1432. [doi:10.1016/j.advwatres. 2008.01.013]
|
Li, F. Q., Crow, W. T., and Kustas, W. P. 2010. Towards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals. Advances in Water Resources, 33(2), 201-214. [doi: 10.1016/j.advwatres.2009.11.007]
|
Liang, S. and Qin, J. 2008. Data assimilation methods for land surface variable estimation. Advances in Land Remote Sensing, 313-339. Netherlands: Springer.
|
Lin, G. F., Chen, G.. R., Wu, M. C., and Chou, Y. C. 2009. Effective forecasting of hourly typhoon rainfall using support vector machines. Water Resources Research, 45, W08440. [doi: 10.1029/2009WR007911]
|
Liong, S. Y., and Sivapragasam, C. 2002. Flood stage forecasting with support vector machines. Journal of the American Water Resources Association, 38(1), 173-186. [doi: 10.1111/j.1752-1688.2002.tb01544.x]
|
Liou, Y. A., Galantowicz, J. F., and England, A. W. 1999. A land surface process/radio brightness with coupled heat and moisture transport for prairie grassland. IEEE Transactions on Geoscience Remote Sensing, 37(4), 1848-1859. [doi: 10.1109/36.774698]
|
Liou, Y. A., Liu, S. F., and Wang, W. J. 2001. Retrieving soil moisture from simulated brightness temperature by a neural network. IEEE Transaction on Geoscience Remote Sensing, 39(8), 1662-1672. [doi:10. 1109/36.942544]
|
Lo, M. H., Famiglietti, J. S., Yeh, P. J. F., and Syed, T. H. 2010. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data. Water Resources Research, 46, W05517. [doi: 10.1029/2009WR007855]
|
Maity, R., Bhagwat, P. P., and Bhatnagar, A. 2010. Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrological Processes, 24(7), 917-923. [doi:10.1002/ hyp.7535]
|
Margulis, S. A., McLaughlin, D., Entekhabi, D. and Dunne, S. 2002. Land data assimilation of soil moisture using measurements from the Southern Great Plains 1997 field experiment. Water Resources Research, 38(12), 1299. [doi: 10.1029/2001WR001114]
|
Mather, J. K. 1974. Climatology: Fundamentals and Applications. New York: Mcgraw-Hill.
|
McLaughlin, D., O'Neill, A., Derber, J., and Kamachi, M. 2005. Opportunities for enhanced collabration within the data assimilation community. Quarterly Journal of the Royal Meteorological Society, 131(613), 3683-3693. [doi: 10.1256/qj.05.89]
|
Monsivais-Huertero, A., Graham, W. D., Judge, J., and Agrawal, D. 2010. Effect of simultaneous state-parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF. Advances in Water Resources, 33(4), 468-484. [doi: 10.1016/j.advwatres.2010.01.011]
|
Moradkhani, H. 2008. Hydrologic remote sensing and land surface data assimilation. Sensors, 8(5), 2986-3004. [doi: 10.3390/s8052986]
|
Mukherjee, S., Osuna, E., and Girosi, F. 1997. Nonlinear prediction of chaotic time series using support vector machines. Proceedings of IEEE Workshops on Neutral Network for Signal Processing, 511-520. New York: the Institute if Electrical and Electronic Engineers, Inc. [doi: 10.1109/NNSP.1997.622433]
|
Pauwels, V. R. N., Hoeben, R., Verhoest, N. E. C., Troch, F. P. D., and Troch, P. A. 2002. Improvement of TOPLATS-based discharge predictions through assimilation of ERS-based remotely sensed soil moisture values. Hydrological Processes, 16(5), 995-1013. [doi: 10.1002/hyp.315]
|
Qin, J., Liang, S. L., Yang, K., and Kaihotsu, I. 2009. Simultaneous estimation of both soil moisture and model parameters using particle filtering method through the assimilation of microwave signal. Journal of Geophysical Researches, 114, D15103. [doi: 10.1029/2008JD011358]
|
Schölkopf, B., Kah-Kay, S., Burges, C. J. C., Girosi, F., Nivoqi, P., Poqqio, T. and Vapnik, V. 1997. Comparing support vector machines with Gaussian kernels to Radial basis function classifiers. IEEE Tansactions on Signal Processing, 45(11), 2758-2765. [doi: 10.1109/78.650102]
|
Smola, A. J. 1998. Learning with Kernels. Ph. D. Dissertation. Berlin: Technischen University of Berlin..
|
Vapnik, V. 1995. The Nature of Statistical Learning Theory. New York: Springer.
|
Vapnik, V. 1998. Statistical Learning Theory. New York: Wiley.
|
Welch, G., and Bishop, G., 2002. An introduction to the Kalman filter (Technical Report 95-041). Chapel Hill: Department of Computer Science, University of North Carolina at Chapel Hill..
|
Xie, X. H., and Zhang, D. X. 2010. Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter. Advances in Water Resources, 33(6), 678-690. [doi:10.1016/j.advwatres. 2010.03.012]
|
Yu, P. S., Chen, S. T., and Chang, I. F. 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328(3-4), 704-716. [doi: 10.1016/j.jhydrol.2006.01.021]
|