Volume 4 Issue 1
Mar.  2011
Turn off MathJax
Article Contents
Xiao-chun ZHANG, Jing-wei WU, Hua-yi WU, Yong LI. 2011: Simplified SEBAL method for estimating vast areal evapotranspiration with MODIS data. Water Science and Engineering, 4(1): 24-35. doi: 10.3882/j.issn.1674-2370.2011.01.003
Citation: Xiao-chun ZHANG, Jing-wei WU, Hua-yi WU, Yong LI. 2011: Simplified SEBAL method for estimating vast areal evapotranspiration with MODIS data. Water Science and Engineering, 4(1): 24-35. doi: 10.3882/j.issn.1674-2370.2011.01.003

Simplified SEBAL method for estimating vast areal evapotranspiration with MODIS data

doi: 10.3882/j.issn.1674-2370.2011.01.003
Funds:  This work was supported by the National Natural Science Foundation of China (Grant No. 50809050) and the Fundamental Research Funds for the Central Universities (Grant No. 2101024).
More Information
  • Corresponding author: Jing-wei WU
  • Received Date: 2010-09-09
  • Rev Recd Date: 2010-11-02
  • The SEBAL (surface energy balance algorithm for land) model provides an efficient tool for estimating the spatial distribution of evapotranspiration, and performs a simple adjustment procedure to calculate sensible heat flux using the wind speed data set from only one weather station. This paper proposes a simplified method to modify the traditional SEBAL model for calculating the 24-hour evapotranspiration ( ) in the Haihe Basin with data from 34 weather stations. We interpolated the wind speeds using the inverse distance weighting method to establish a wind field and then used it to calculate the friction velocity directly. This process also simplifies the iterative computation process of sensible heat flux. To validate the feasibility of this simplified method, we compared the results with those obtained with an appropriate but more complex method proposed by Tasumi, which separates a vast area into several sub-areas based on the weather conditions, and runs the SEBAL model separately in each sub-area. The results show good agreement between the evapotranspiration generated by the two methods, with a coefficient of determination (r2) of 0.966, which indicates the feasibility of estimating evapotranspiration over a large region with the simplified method.   


  • loading
  • Ahmad, M. D., Biggs, T., Turral, H., and Scott, C. A. 2006. Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna River Basin of India. Water Science and Technology, 53(10), 83-90. [doi: 10.2166/wst.2006.301]
    Allen, R. G. 1996. Assessing integrity of weather data for reference evapotranspiration estimation. Journal of Irrigation and Drainage Engineering, 122(2), 97-106. [doi: 10.1061/(ASCE)0733-9437(1996)122:2(97)]
    Allen, R. G., Tasumi, M., and Trezza, R. 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) model. Journal of Irrigation and Drainage Engineering, 133(4), 380-394. [doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)]
    Bastiaanssen, W. G. M. 1995. Regionalization of Surface Flux Densities and Moisture Indicators in Composite Terrain: A Remote Sensing Approach under Clear Skies in Mediterranean Climates. Ph. D. Dissertation. Wageningen: Wageningen Agricultural University.
    Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A. M. 1998a. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal of Hydrology, 212-213, 198-212. [doi: 10.1016/S0022-1694(98)00253-4]
    Bastiaanssen, W. G. M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J., and van der Wal, T. 1998b. A remote sensing surface energy balance algorithm for land (SEBAL): 2. Validation. Journal of Hydrology, 212-213, 213-229. [ doi: 10.1016/S0022-1694(98)00254-6]
    Bastiaanssen, W. G. M., and Bos, M. G. 1999. Irrigation performance indicators based on remotely sensed data: A review of literature. Irrigation and Drainage Systems, 13(4), 291-311. [doi:10.1023/A:1006355 315251]
    Bastiaanssen, W. G. M. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1-2), 87-100. [ doi: 10.1016/S0022-1694(99)00202-4]
    Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., and Allen, R. G. 2005. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131(1), 85-93. [doi:10.1061/(ASCE)0733- 9437(2005)131:1(85)]
    Bastiaanssen, W. G. M., Thoreson, B., Clark, B., and Davids, G. 2010. Discussion of “Application of SEBAL Model for Mapping Evapotranspiration and Estimating Surface Energy Fluxes in South-Central Nebraska” by Ramesh K. Singh, Ayse Irmak, Suat Irmak, and Derrel L. Martin. Journal of Irrigation and Drainage Engineering, 136(4), 282-283. [doi: 10.1061/(ASCE)IR.1943-4774.0000216]
    Granger, R. J. 1997. Comparison of surface and satellite-derived estimates of evapotranspiration using a feedback algorithm. Kite, G. W., Pietroniro, A., and Schultz, T. J., eds., Applications of Remote Sensing in Hydrology, Proceedings of the 3rd International Workshop NHRI Symposium. Greenbelt: NASA Goddard Space Flight Center.
    Hemakumara, H. M., Chandrapala, L., and Moene, A. 2003. Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agricultural Water Management, 58(2), 109-122. [doi: 10.1016/S0378-3774(02)00131-2]
    McCabe, M. F., and Wood, E. F. 2006. Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors. Remote Sensing of Environment, 105(4), 271-285. [doi:10.1016/j.rse.2006. 07.006]
    Morse, A., Tasumi, M., Allen, R. G., and Kramber, W. J. 2000. Application of the SEBAL Methodology for Estimating Consumptive Use of Water and Streamflow Depletion in the Bear River Basin of Idaho Through Remote Rensing. Boise: Idaho Department of Water Resources.
    Singh, R. K., Irmak, A., Irmak, S., and Martin, D. L. 2008. Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska. Journal of Irrigation and Drainage Engineering, 134(3), 273-285. [doi: 10.1061/(ASCE)0733-9437(2008)134:3(273)]
    Starks, P. J., Norman, J. M., Blad, B. L., Walter-Shea, E. A., and Walthall, C. L. 1991. Estimation of shortwave hemispherical reflectance (albedo) from bidirectionally reflected radiance data. Remote Sensing of Environment, 38(2), 123-134. [ doi: 10.1016/0034-4257(91)90074-G]
    Tasumi, M. 2003. Progress in Operational Estimation of Regional Evapotranspiration Using Satellite Imagery. Ph. D. Dissertation. Moscow: University of Idaho.
    Tasumi, M., Allen, R. G., and Trezza, R. 2008. At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. Journal of Hydrologic Engineering, 13(2), 51-63. [doi: 10.1061/(ASCE)1084-0699(2008)13:2(51)]
    Vidal, A., and Perrier, A. 1989. Analysis of a simplified relation used to estimate daily evapotranspiration from satellite thermal IR data. International Journal of Remote Sensing, 10(8), 1327-1337.
    Zhang, S. W., Lei, Y. P., Li, H. J., and Wang, Z. 2010. Temporal-spatial variation in crop evapotranspiration in Hebei Plain, China. Journal of Food, Agriculture and Environment, 8(2), 672-677.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3887) PDF downloads(6069) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint