Volume 4 Issue 1
Mar.  2011
Turn off MathJax
Article Contents
Jun ZHANG, Zhen WU, Chun-tian CHENG, Shi-qin ZHANG. 2011: Improved particle swarm optimization algorithm for multi-reservoir system operation. Water Science and Engineering, 4(1): 61-73. doi: 10.3882/j.issn.1674-2370.2011.01.006
Citation: Jun ZHANG, Zhen WU, Chun-tian CHENG, Shi-qin ZHANG. 2011: Improved particle swarm optimization algorithm for multi-reservoir system operation. Water Science and Engineering, 4(1): 61-73. doi: 10.3882/j.issn.1674-2370.2011.01.006

Improved particle swarm optimization algorithm for multi-reservoir system operation

doi: 10.3882/j.issn.1674-2370.2011.01.006
Funds:  This work was supported by the National Natural Science Foundation of China (Grant No. 50679011).
More Information
  • Corresponding author: Jun ZHANG
  • Received Date: 2010-07-15
  • Rev Recd Date: 2010-12-30
  • In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm.   

     

  • loading
  • Andrews, P. S. 2006. An investigation into mutation operators for particle swarm optimization. IEEE Congress on Evolutionary Computation, 1044-1051. Vancouver: Institute of Electrical and Electronics Engineers. [doi: 10.1109/CEC.2006.1688424]
    Archibald, T. W., McKinnon, K. I. M., and Thomas, L. C. 1997. An aggregate stochastic dynamic programming model of multireservoir systems. Water Resources Research, 33(2), 333-340. [doi:10.1029/ 96WR02859]
    Bellman, R. E., and Dreyfus, S. E. 1962. Applied Dynamic Programming. Santa Monica: RAND Corporation.
    Cai, X. M., McKinney, D. C., and Lasdon, L. S. 2001. Solving nonlinear water management models using a combined genetic algorithm and linear programming approach. Advances in Water Resources, 24(6), 667-676. [doi: 10.1016/S0309-1708(00)00069-5]
    Cai, X. M., Lasdon, L., and Michelsen, A. M. 2004. Group decision-making in water resources planning using multiple objective analysis. Journal of Water Resources Planning and Management, 130(1), 4-14. [doi: 10.1061/(ASCE)0733-9496(2004)130:1(4)]
    Call, S. T., Zubarev, D. Y., and Boldyrev, A. I. 2007. Global minimum structure searches via particle swarm optimization. Journal of Computational Chemistry, 28(7), 1177-1186. [doi: 10.1002/jcc.20621]
    Chandramouli, V., and Raman, H. 2001. Multireservoir modeling with dynamic programming and neural networks. Journal of Water Resources Planning and Management, 127(2), 89-98. [doi:10.1061/(ASCE) 0733-9496(2001)127:2(89)]
    Chau, K. W. 2007. A split-step particle swarm optimization algorithm in river stage forecasting. Journal of Hydrology, 346(3-4), 131-135. [doi: 10.1016/j.jhydrol.2007.09.004]
    Chaves, P., and Kojiri, T. 2007. Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks. Advances in Water Resources, 30(5), 1329-1341. [doi: 10.1016/j.advwatres.2006.11.011]
    Chaves, P., and Chang, F. J. 2008. Intelligent reservoir operation system based on evolving artificial neural networks. Advances in Water Resources, 31(6), 926-936. [doi: 10.1016/j.advwatres.2008.03.002]
    Chen, L. 2003. Real coded genetic algorithm optimization of long term reservoir operation. Journal of the American Water Resources Association, 39(5), 1157-1165. [doi: 10.1111/j.1752-1688.2003.tb03699.x]
    Cheng, C. T., Wang, W. C., Xu, D. M., and Chau, K. W. 2008. Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resources Management, 22(7), 895-909. [doi: 10.1007/s11269-007-9200-1]
    Chiu, Y. C., Chang, L. C., and Chang, F. J. 2007. Using a hybrid genetic algorithm-simulated annealing algorithm for fuzzy programming of reservoir operation. Hydrological Processes, 21(23), 3162-3172. [doi: 10.1002/hyp.6539]
    del Valle, Y., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J. C., and Harley, R. G. 2008. Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Transactions on Evolutionary Computation, 12(2), 171-195. [doi: 10.1109/TEVC.2007.896686]
    Faber, B. A., and Stedinger, J. R. 2001. Reservoir optimization using sampling SDP with ensemble streamflow prediction (ESP) forecasts. Journal of Hydrology, 249(1-4), 113-133. [doi:10.1016/S0022-1694(01) 00419-X]
    Gill, M. K., Kaheil, Y. H., Khalil, A., McKee, M., and Bastidas, L. 2006. Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resources Research, 42(7). [doi:10.1029/ 2005WR004528]
    Higashi, N., and Iba, H. 2003. Particle swarm optimization with Gaussian mutation. Proceedings of the IEEE Swarm Intelligence Symposium 2003, 72-79. Indianapolis: Institute of Electrical and Electronics Engineers. [doi: 10.1109/SIS.2003.1202250]
    Hong, W. C. 2008. Rainfall forecasting by technological machine learning models. Applied Mathematics and Computation, 200(1), 41-57. [doi: 10.1016/j.amc.2007.10.046]
    Jalali, M. R., Afshar, A., and Marino, M. A. 2006. Reservoir operation by ant colony optimization algorithms. Iranian Journal of Science and Technology (Transaction B: Engineering), 30(B1), 107-117.
    Jalali, M. R., Afshar, A., and Marino, M. A. 2007. Multi-colony ant algorithm for continuous multireservoir operation optimization problem. Water Resources Management, 21(9), 1429-1447. [doi:10.1007/s11269- 006-9092-5]
    Jothiprakash, V., and Shanthi, G. 2006. Single reservoir operating policies using genetic algorithm. Water Resources Management, 20(6), 917-929. [doi: 10.1007/s11269-005-9014-y]
    Kennedy, J., and Eberhart, R. 1995. Particle swarm optimization. Proceedings of IEEE Conference on Neural Networks, 1942-1948. Piscataway: IEEE Service Center. [doi: 10.1109/ICNN.1995.488968]
    Kim, T., Heo, J. H., and Jeong, C. S. 2006. Multi-reservoir system optimization in the Han River Basin using multi-objective genetic algorithms. Hydrological Processes, 20(9), 2057-2075. [doi: 10.1002/hyp.6047]
    Ko, P. C., and Lin, P. C. 2006. An evolution-based approach with modularized evaluations to forecast financial distress. Knowledge-based Systems, 19(1), 84-91. [doi: 10.1016/j.knosys.2005.11.006]
    Kumar, D. N., and Baliarsingh, F. 2003. Folded dynamic programming for optimal operation of multireservoir system. Water Resources Management, 17(5), 337-353. [doi: 10.1023/A:1025894500491]
    Kumar, D. N., and Reddy, M. J. 2006. Ant colony optimization for multi-purpose reservoir operation. Water Resources Management, 20(6), 879-898. [doi: 10.1007/s11269-005-9012-0]
    Kumar, D. N., and Reddy, M. J. 2007. Multipurpose reservoir operation using particle swarm optimization. Journal of Water Resources Planning and Management, 133(3), 192-201. [doi:10.1061/(ASCE) 0733-9496(2007)133:3(192)]
    Labadie, J. W. 2004. Optimal operation of multireservoir systems: State-of-the-art review. Journal of Water Resources Planning and Management, 130(2), 93-111. [doi: 10.1061/(ASCE)0733-9496(2004)130:2(93)]
    Lee, T. S., Ting, T. O., Lin, Y. J., and Htay, T. 2007. A particle swarm approach for grinding process optimization analysis. The International Journal of Advanced Manufacturing Technology, 33(11-12), 1128-1135. [doi: 10.1007/s00170-006-0538-y]
    Li, X. G., and Wei, X. 2008. An improved genetic algorithm-simulated annealing hybrid algorithm for the optimization of multiple reservoirs. Water Resources Management, 22(8), 1031-1049. [doi:10.1007/ s11269-007-9209-5]
    Mousavi, S. J., Karamouz, M., and Menhadj, M. B. 2004a. Fuzzy-state stochastic dynamic programming for reservoir operation. Journal of Water Resources Planning and Management, 130(6), 460-470. [doi: 10.1061/(ASCE)0733-9496(2004)130:6(460)]
    Mousavi, S. J., Mahdizadeh, K., and Afshar, A. 2004b. A stochastic dynamic programming model with fuzzy storage states for reservoir operations. Advances in Water Resources, 27(11), 1105-1110. [doi:10.1016/ j.advwatres.2004.07.007]
    Neelakantan, T. R., and Pundarikanthan, N. V. 2000. Neural network-based simulation-optimization model for reservoir operation. Journal of Water Resources Planning and Management, 126(2), 57-64. [doi: 10.1061/(ASCE)0733-9496(2000)126:2(57)]
    Ngo, L. L., Madsen, H., and Rosbjerg, D. 2007. Simulation and optimisation modelling approach for operation of the Hoa Binh Reservoir, Vietnam. Journal of Hydrology, 336(3-4), 269-281. [doi:10.1016/j. jhydrol.2007.01.003]
    Pastorino, M. 2007. Stochastic optimization methods applied to microwave imaging: A review. IEEE Transactions on Antennas and Propagation, 55(3), 538-548. [doi: 10.1109/TAP.2007.891568]
    Ponnambalam, K., Karray, F., and Mousavi, S. J. 2003. Minimizing variance of reservoir systems operations benefits using soft computing tools. Fuzzy Sets and Systems, 139(2), 451-461. [doi:10.1016/S0165- 0114(02)00546-8]
    Rao, A. R. M., and Anandakumar, G. 2007. Optimal placement of sensors for structural system identification and health monitoring using a hybrid swarm intelligence technique. Smart Materials and Structures, 16(6), 2658-2672. [doi: 10.1088/0964-1726/16/6/071]
    Reddy, M. J., and Kumar, D. N. 2007a. Optimal reservoir operation for irrigation of multiple crops using elitist-mutated particle swarm optimization. Hydrological Sciences Journal, 52(4), 686-701. [doi: 10.1623/hysj.52.4.686]
    Reddy, M. J., and Kumar, D. N. 2007b. Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir operation. Hydrological Processes, 21(21), 2897-2909. [doi: 10.1002/hyp.6507]
    Reis, L. F. R., Walters, G. A., Savic, D., and Chaudhry, F. H. 2005. Multi-reservoir operation planning using hybrid genetic algorithm and linear programming (GA-LP): An alternative stochastic approach. Water Resources Management, 19(6), 831-848. [doi: 10.1007/s11269-005-6813-0]
    Robinson, J., and Rahmat-Samii, Y. 2004. Particle swarm optimization in electromagnetics. IEEE Transactions on Antennas and Propagation, 52(2), 397-407. [doi: 10.1109/TAP.2004.823969]
    Russell, S. O., and Campbell, P. F. 1996. Reservoir operating rules with fuzzy programming. Journal of Water Resources Planning and Management, 122(3), 165-170. [doi:10.1061/(ASCE)0733-9496(1996) 122:3(165)]
    Sharif, M., and Wardlaw, R. 2000. Multireservoir systems optimization using genetic algorithms: Case study. Journal of Computing in Civil Engineering, 14(4), 255-263. [doi:10.1061/(ASCE)0887-3801(2000) 14:4(255)]
    Shi, Y., and Eberhart, R. C. 1999. Empirical study of particle swarm optimization. Proceedings of the 1999 IEEE Congress on Evolutionary Computation, 1945-1950. Washington, D.C.: Institute of Electrical and Electronics Engineers. [doi: 10.1109/CEC.1999.785511]
    Shourian, M., Mousavi, S. J., and Tahershamsi, A. 2008. Basin-wide water resources planning by integrating PSO algorithm and MODSIM. Water Resources Management, 22(10), 1347-1366. [doi:10.1007/s11269- 007-9229-1]
    Tejadaguibert, J. A., Johnson, S. A., and Stedinger, J. R. 1995. The value of hydrologic information in stochastic dynamic programming models of a multireservoir system. Water Resources Research, 31(10), 2571-2579. [doi: 10.1029/95WR02172]
    Wu, C. L., and Chau, K.W. 2006. Evaluation of several algorithms in forecasting flood. The 19th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, 111-116. Berlin: Springer. [doi: 10.1007/11779568_14]
    Yeh, W. 1985. Reservoir management and operations models: A state-of-the-art review. Water Resources Research, 21(12), 1797-1818. [doi: 10.1029/WR021i012p01797]
    Yuan, X. H., Zhang, Y. C., and Yuan, Y. B. 2008. Improved self-adaptive chaotic genetic algorithm for hydrogeneration scheduling. Journal of Water Resources Planning and Management, 134(4), 319-325. [doi: 10.1061/(ASCE)0733-9496(2008)134:4(319)]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3008) PDF downloads(4037) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return