Volume 5 Issue 1
Mar.  2012
Turn off MathJax
Article Contents
Xiao-qin ZHANG, Wei-min BAO. 2012: Modified Saint-Venant Equations for Flow Simulation in Tidal Rivers. Water Science and Engineering, 5(1): 34-45. doi: 10.3882/j.issn.1674-2370.2012.01.004
Citation: Xiao-qin ZHANG, Wei-min BAO. 2012: Modified Saint-Venant Equations for Flow Simulation in Tidal Rivers. Water Science and Engineering, 5(1): 34-45. doi: 10.3882/j.issn.1674-2370.2012.01.004

Modified Saint-Venant Equations for Flow Simulation in Tidal Rivers

doi: 10.3882/j.issn.1674-2370.2012.01.004
Funds:  the National Key Technologies R&D Program of China for the Eleventh Five-Year Plan Period (Grant No. 2008BAB29B08-02) and the Program for the Ministry of Education and State Administration of Foreign Experts Affairs of China (Grant No. B08408)
More Information
  • Corresponding author: Xiao-qin ZHANG
  • Received Date: 2011-02-18
  • Rev Recd Date: 2011-09-15
  •  Flow in tidal rivers periodically propagates upstream or downstream under tidal influence. Hydrodynamic models based on the Saint-Venant equations (the SVN model) are extensively used to model tidal rivers. A force-corrected term expressed as the combination of flow velocity and the change rate of the tidal level was developed to represent tidal effects in the SVN model. A momentum equation incorporating with the corrected term was derived based on Newton’s second law. By combing the modified momentum equation with the continuity equation, an improved SVN model for tidal rivers (the ISVN model) was constructed. The simulation of a tidal reach of the Qiantang River shows that the ISVN model performs better than the SVN model. It indicates that the corrected force derived for tidal effects is reasonable; the ISVN model provides an appropriate enhancement of the SVN model for flow simulation of tidal rivers.


  • loading
  • Franchini, M., and Lamberti, P. 1994. A flood routing Muskingum type simulation and forecasting model based on level data alone. Water Resources Research, 30(7), 2183-2196.
    Friedrichs, C. T., and Aubrey, D. G. 1994. Tidal propagation in strongly convergent channels. Journal of Geophysical Research, 99(C2), 3321-3336.
    Garel, E., Pinto, L., Santos, A., and Ferreira, Ó. 2009. Tidal and river discharge forcing upon water and sediment circulation at a rock-bound estuary (Guadiana estuary, Portugal). Estuarine, Coastal and Shelf Science, 84(2), 269-281. [doi: 10.1016/j.ecss.2009.07.002]
    Horrevoets, A. C., Savenije, H. H. G., Schuurman, J. N., and Graas, S. 2004. The influence of river discharge on tidal damping in alluvial estuaries. Journal of Hydrology, 294(4), 213-228. [doi:10.1016/j.jhydrol. 2004.02.012]
    Hsu, M. H., Lin, S. H., Fu, J. C., Chung, S. F., and Chen, A. S. 2010. Longitudial stage profiles forecasting in rivers for flash floods. Journal of Hydrology, 388(3-4), 426-437. [doi: 10.1016/j.jhydrol.2010.05.028]
    Lamberti, P., and Pilati, S. 1996. Flood propagation models for real-time forecasting. Journal of Hydrology, 175(1-4), 239-265. [doi: 10.1016/S0022-1694(96)80013-8]
    Longuet-Higgins, M. S., and Stewart, R. W. 1964. Radiation stress in water waves: A physical discussion with applications. Deep Sea Research, 11(5), 529-562.
    Mazumder, N. C., and Bose, S. 1995. Formation and propagation of tidal bore. Journal of Waterway, Port, Coastal, and Ocean Engineering, 121(3), 167-175. [doi: 10.1061/(ASCE)0733-950X(1995)121:3(167)]
    Munier, S., Litrico, X., Belaud, G., and Malaterre, P. O. 2008. Distributed approximation of open-channel flow routing accounting for backwater effects. Advances in Water Resources, 31(12), 1590-1602. [doi: 10.1016/j.advwatres.2008.07.007]
    Nash, J. E., and Sutcliffe, J. V. 1970. River flow forecasting through conceptual models, 1. A discussion of principles. Journal of Hydrology, 10(3), 282-290. [doi: 10.1016/0022-1694(92)90255-6]
    Newell, C., Mullarkey, T., and Clyne, M. 2005. Radiation stress due to ocean waves and the resulting currents and set-up/set-down. Ocean Dynamics, 55(5-6), 499-514. [doi: 10.1007/s10236-005-0009-2]
    Pan, C. H., Lin, B. Y., and Mao, X. Z. 2007. Case study: Numerical modeling of the tidal bore on the Qiantang River, China. Journal of Hydraulic Engineering, 133(2), 130-138. [doi:10.1061/(ASCE)0733-9429 (2007)133:2(130)]
    Phillips, J. D., and Slattery, M. C. 2007. Downstream trends in discharge, slope, and stream power in a lower coastal plain river. Journal of Hydrology, 334(1-2), 290-303. [doi: 10.1016/j.jhydrol.2006.10.018]
    Qu, S. M., Bao, W. M., Shi, P., Yu, Z. B., and Jiang, P. 2009. Water-stage forecasting in a multitributary tidal river using a bidirectional Muskingum method. Journal of Hydrologic Engineering, 14(12), 1299-1308. [doi: 10.1061/(ASCE)HE.1943-5584.0000120]
    Sobey, R. J. 2001. Evaluation of numerical models of flood and tide propagation in channels. Journal of Hydraulic Engineering, 127(10), 805-823. [doi: 10.1061/(ASCE)0733-9429(2001)127:10(805)]
    Su, M. D., Xu, X., Zhu, J. L., and Hon, Y. C. 2001. Numerical simulation of tidal bore in Hangzhou Gulf and Qiantangjiang. International Journal for Numerical Methods in Fluids, 36(2), 205-247. [doi:10.1002/ fld.129]
    Tsai, C. W. 2005. Flood routing in mild-sloped rivers-wave characteristics and downstream backwater effect. Journal of Hydrology, 308(1-4), 151-167. [doi: 10.1016/j.jhydrol.2004.10.027]
    Wu, C. L., Chau, K. W., and Li, Y. S. 2008. River stage prediction based on a distributed support vector regression. Journal of Hydrology, 358(1-2), 96-111. [doi: 10.1016/j.jhydrol.2008.05.028]
    Zheng, J. H., and Yan, Y. X. 2001. Vertical variations of wave-induced radiation stress tensor. Acta Oceanplogica Sinica, 20(4), 597-605.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2454) PDF downloads(3672) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint