Volume 5 Issue 1
Mar.  2012
Turn off MathJax
Article Contents
Xu-hua REN, Hai-jun WANG, Ji-xun ZHANG. 2012: Numerical study of AE and DRA methods in sandstone and granite in orthogonal loading directions. Water Science and Engineering, 5(1): 93-104. doi: 10.3882/j.issn.1674-2370.2012.01.009
Citation: Xu-hua REN, Hai-jun WANG, Ji-xun ZHANG. 2012: Numerical study of AE and DRA methods in sandstone and granite in orthogonal loading directions. Water Science and Engineering, 5(1): 93-104. doi: 10.3882/j.issn.1674-2370.2012.01.009

Numerical study of AE and DRA methods in sandstone and granite in orthogonal loading directions

doi: 10.3882/j.issn.1674-2370.2012.01.009
Funds:  the National Natural Science Foundation of China (Grant No. 50978083), the Fundamental Research Funds for the Central Universities (Grants No. 2009B07714 and 2010B13914) in China, and the Innovation Project for Graduate Students of Jiangsu Province (Grant No. CX10B_215Z)
More Information
  • Corresponding author: Hai-jun WANG
  • Received Date: 2011-05-03
  • Rev Recd Date: 2011-09-01
  • The directional dependency of the acoustic emission (AE) and deformation rate analysis (DRA) methods was analyzed, based on the contact bond model in the two-dimensional particle flow code (PFC2D) in two types of rocks, the coarse-grained sandstone and Aue granite. Each type of rocks had two shapes, the Brazilian disk and a square shape. The mechanical behaviors of the numerical model had already been verified to be in agreement with those of the physical specimens in previous research. Three loading protocols with different loading cycles in two orthogonal directions were specially designed in the numerical tests. The results show that no memory effect is observed in the second loading in the orthogonal direction. However, both the cumulative crack number of the second loading and the differential strain value at the inflection point are influenced by the first loading in the orthogonal direction.

     

  • loading
  • Chang, S. H., Yun, K. J., and Lee, C. I. 2002. Modeling of fracture and damage in rock by the bonded-particle model. Geosystem Engineering, 5(4), 113-120.
    Chen, Z. H., Tham, L. G., and Xie, H. 2007. Experimental and numerical study of the directional dependency of the Kaiser effect in granite. International Journal of Rock Mechanics and Mining Sciences, 44(7), 1053-1061. [doi: 10.1016/j.ijrmms.2006.09.009]
    Filimonov, Y. L., Lavrov, A. V., Shafarenko, Y. M., and Shkuratnik, V. L. 2001. Memory effects in rock salt under triaxial stress state and their use for stress measurement in a rock mass. Rock Mechanics and Rock Engineering, 34(4), 275-291. [doi: 10.1007/s006030170002]
    Fujii, N., and Hamano, Y. 1997. Anisotropic changes in resistivity and velocity during rock deformation. Manghani, M. H., and Akimoto, S. eds., High Pressure Research: Application in Geophysics, 53-63. New York: Academic Press.
    Hazzard, J. F., and Young, R. P. 2000. Simulating acoustic emissions in bonded particle models of rock. International Journal of Rock Mechanics and Mining Sciences, 37(5), 867-872. [doi:10.1016/S1365- 1609(00)00017-4]
    Holcomb, D. J., and Costin, L. S. 1986. Detecting damage surfaces in brittle materials using acoustic emissions. Journal of Applied Mechanics, 53(3), 536-544. [doi: 10.1115/1.3171807]
    Holcomb, D. J. 1993. General theory of the Kaiser effect. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7), 929-935. [doi: 10.1016/0148-9062(93)90047-H]
    Hunt, S. P., Meyers, A. G., and Louchnikov, V. 2003. Modelling the Kaiser effect and deformation rate analysis in sandstone using the discrete element method. Computers and Geotechnics, 30(7), 611-621. [doi: 10.1016/S0266-352X(03)00061-2]
    Itasca Consulting Group, Inc. 2002. PFC2D (Particle Flow Code in 2Dimensions), Version 3.0. Minneapolis: Itasca Consulting Group, Inc.
    Kaiser, J. 1953. Erkenntnisse und Folgerungen aus der Messung von Geräuschen bei Zugbeanspruchung von Metallischen Werkstoffen. Archiv für das Eisenhüttenwesen, 24(1-2), 43-45. (in German)
    Kanagawa, T., and Nakasa, H. 1978. Method of Estimating Ground Pressure. U.S. Patent 4 107 981.
    Lavrov, A., Vervoort, A., Wevers, M., and Napier, J. A. L. 2002. Experimental and numerical study of the Kaiser effect in cyclic Brazilian tests with disk rotation. International Journal of Rock Mechanicsand Mining Sciences, 39(3), 287-302. [doi: 10.1016/S1365-1609(02)00038-2]
    Lavrov, A. 2003. The Kaiser effect in rocks: Principles and stress estimation techniques. International Journal of Rock Mechanics and Mining Sciences, 40(2), 151-171. [doi: 10.1016/S1365-1609(02)00138-7]
    Michihiro, K., Hata, K., Yoshioka, H., and Fujiwara, T. 1991/1992. Determination of the initial stresses on rock mass using acoustic emission method. Journal of Acoustic Emission, 10(1-2), 63-76.
    Reed, L. D., and McDowell, G. M. 1994. A fracto-emission memory effect and subharmonic vibrations in rock samples stressed at sonic frequencies. Rock Mechanics and Rock Engineering, 27(4), 253-261. [doi: 10.1007/BF01020202]
    Stuart, C. E., Meredith, P. G., Murrell, S. A. F., and van Munster, J. G. 1993. Anisotropic crack damage and stress-memory effects in rocks under triaxial loading. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7), 937-941. [doi: 10.1016/0148-9062(93)90048-I]
    Stuart, C. E., Meredith, P. G., and Murrell, S. A. F. 1994. Acoustic emission study of anisotropic stress memory in rock subjected to cyclic polyaxial loading. Journal of Acoustic Emission, 12(3-4), 12-17.
    Tuncay, E., and Ulusay, R. 2008. Relation between Kaiser effect levels and pre-stresses applied in the laboratory. International Journal of Rock Mechanics and Mining Sciences, 45(4), 524-537. [ doi: 10.1016/j.ijrmms.2007.07.013]
    Villaescusa, E., Seto, M., and Baird, G. 2002. Stress measurements from oriented core. International Journal of Rock Mechanics and Mining Sciences, 39(5), 603-615. [ doi:10.1016/S1365-1609(02)00059-X ]
    Wu, J. H., and Jan, S. C. 2010. Experimental validation of core-based pre-stress evaluations in rock: A case study of Changchikeng sandstone in the Tseng-wen reservoir transbasin water tunnel. Bulletin of Engineering Geology and the Environment, 69(4), 549-559. [doi: 10.1007/s10064-010-0265-3]
    Yamamoto, K., kuwahara, Y., Kato, N., and Hirasawa, T. 1990. Deformation rate analysis: A new method for in situ stress estimation from inelastic deformation of rock samples under uni-axial compressions, Tohoku Geophysical Journal, 33(2), 127-147.
    Yamamoto, K. 2009. A theory of rock core-based methods for in-situ stress measurement. Earth, Planets and Space, 61(10), 1143-1161.
    Yoon, J. 2007. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. International Journal of Rock Mechanics and Mining Sciences, 44(6), 871-889. [doi: 10.1016/j.ijrmms.2007.01.004]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2330) PDF downloads(2496) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return