Volume 5 Issue 4
Dec.  2012
Turn off MathJax
Article Contents
Li YANG, Hiroto MAEDA, Takeshi YOSHIKAWA, Gui-qin ZHOU. 2012: Algicidal effect of bacterial isolates of Pedobacter sp. against cyanobacterium Microcystis aeruginosa. Water Science and Engineering, 5(4): 375-382. doi: 10.3882/j.issn.1674-2370.2012.04.002
Citation: Li YANG, Hiroto MAEDA, Takeshi YOSHIKAWA, Gui-qin ZHOU. 2012: Algicidal effect of bacterial isolates of Pedobacter sp. against cyanobacterium Microcystis aeruginosa. Water Science and Engineering, 5(4): 375-382. doi: 10.3882/j.issn.1674-2370.2012.04.002

Algicidal effect of bacterial isolates of Pedobacter sp. against cyanobacterium Microcystis aeruginosa

doi: 10.3882/j.issn.1674-2370.2012.04.002
Funds:  This work was supported by the Basic Research Program of Jiangsu Province (Grant No. BK2012828), the grant of Greater Nagoya Project in Environmental Science, and the Open Laboratory Project of Nanjing University of Technology (Grant No. 2012-2013-138).
 
More Information
  • Corresponding author: Li YANG
  • Received Date: 2011-10-13
  • Rev Recd Date: 2012-08-02
  • The aim of this study was to isolate algicidal bacteria so as to control harmful cyanobacterium Microcystis aeruginosa (M. aeruginosa) blooms using biological methods. Nine bacterial strains were isolated to inhibit the growth of M. aeruginosa, among which the MaI11-5 bacterial strain exhibited remarkable algicidal activity against M. aeruginosa cells during the test. Based on the 16S rDNA analysis, the isolated MaI11-5 was identified as Pedobacter sp. through morphology and homology research. The results of cocultivation of the cyanobacteria with MaI11-5 algicidal isolates showed obvious algicidal activity against cyanobacterial cells. The algicidal effect of MaI11-5 exceeded 50% after two days, exceeded 70% after four days, and reached 80% after seven days. The observation results with a scanning electron microscope showed that the cyanobacterial cells aggregated and produced mucous-like substances when cocultivated with the algicidal bacteria. The results indicated that the MaI11-5 bacterial strain may possess a novel function for controlling harmful blooms and further studies will provide new insights into its role in water environment.

     

  • loading
  • Berg, K. A., Lyra, C., Sivonen, K., Paulin, L., Suomalainen, S., Tuomi, P., and Rapala, J. 2009. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. The ISME Journal, 3(3), 314-325. [doi: 10.1038/ismej.2008.110]
    Choi, H. J., Kim, B. H., Kim, J. D., and Han, M. S. 2005. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biological Control, 33(3), 335-343. [doi: 10.1016/j.biocontrol.2005.03.007]
    Dai, R., Liu, H., Qu, J., and Ru, J. 2008. Cyanobacteria and their toxins in Guanting Reservoir of Beijing, China. Journal of Hazardous Materials, 153(1-2), 470-477. [doi: 10.1016/j.jhazmat.2007.08.078]
    Ernst, B., Hoeger, S. J., O’Brien, E., and Dietrich, D. R. 2006. Oral toxicity of the microcystin-containing cyanobacterium Planktothrix rubescens in European whitefish (Coregonus lavaretus). Aquatic Toxicology, 79(1), 31-40. [doi: 10.1016/j.aquatox.2006.04.013]
    Falconer, I. R. 1999. An overview of problems caused by toxic blue-green algae (cyanobacteria) in drinking and recreational water. Environmental Toxicology, 14(1), 5-12. [doi:10.1002/(SICI)1522-7278(199902) 14:1<5::AID-TOX3>3.3.CO;2-S]
    Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368-376. [doi: 10.1007/BF01734359]
    Ichimura, T. 1979. Isolation and culture methods of algae. Nishizawa, K., and Chihara, M., eds., Methods in Phycological Studies, 294-305. Tokyo: Kyoritsu Shuppan. (in Japanese)
    Imai, I., Ishida, Y., Sakaguchi, K., and Hata, Y. 1995. Algicidal marine bacteria isolated from northern Hiroshima Bay, Japan. Fisheries Science, 61(4), 628-636.
    Jacquet, C., Thermes, V., de Luze, A., Puiseux-Dao, S., Bernard, C., Joly, J. S., Bourrat, F., and Edery, M. 2004. Effects of microcystin-LR on development of medaka fish embryos (Oryzias latipes). Toxicon, 43(2), 141-147. [doi: 10.1016/j.toxicon.2003.11.010]
    Kim, B. H., Sang, M., Hwang, S. J., and Han, M. S. 2008. In situ bacterial mitigation of the toxic cyanobacterium microcystis aeruginosa: Implications for biological bloom control. Limnology and Oceanography-Methods, 6, 513-522.
    Kim, Y. S., Lee, D. S., Jeong, S. Y., Lee, W. J., and Lee, M. S. 2009. Isolation and characterization of a marine algicidal bacterium against the harmful raphidophyceae Chattonella marina. Journal of Microbiology, 47(1), 9-18. [doi: 10.1007/s12275-008-0141-z]
    Manage, P. M., Kawabata, Z., and Nakano, S. 2001. Dynamics of cyanophage-like particles and algicidal bacteria causing Microcystis aeruginosa mortality. Limnology, 2(2), 73-78. [doi: 10.1007/s102010170002]
    Mayali, X., and Doucette, G. J. 2002. Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae, 1(3), 277-293. [doi: 10.1016/S1568-9883(02)00032-X]
    Mu, R. M., Fan, Z. Q., Pei, H. Y., Yuan, X. L., Liu, S. X., and Wang, X. R. 2007. Isolation and algae-lysing characteristics of the algicidal bacterium B5. Journal of Environmental Sciences (China), 19(11), 1336-1340. [doi: 10.1016/S1001-0742(07)60218-6]
    Oberholster, P. J., Botha, A. M., and Grobbelaar, J. U. 2004. Microcystis aeruginosa: Source of toxic microcystins in drinking water. African Journal of Biotechnology, 3(3), 159-168.
    Pajdak-Stos, A., Fiakowska, E., and Fyda, J.2001. Phormidium autumnale (Cyanobacteria) defense against three ciliate grazer species. Aquatic Microbial Ecology, 23(3), 237-244. [doi: 10.3354/ame023237]
    Palikova, M., Krejci, R., Hilscherova, K., Babica, P., Navratil, S., Kopp, R., and Blaha, L. 2007. Effect of different cyanobacterial biomasses and their fractions with variable microcystin content on embryonal development of carp (Cyprinus carpio). Aquatic Toxicology, 81(3), 312-318. [doi:10.1016/j.aquatox. 2007.01.001]
    Pattanaik, B., Schumann, R., and Karsten, U. 2007. Effects of ultraviolet radiation on cyanobacteria and their protective mechanisms. Cellular Origin and Life in Extreme Habitats and Astrobiology, 11, 29-45. [doi: 10.1007/978-1-4020-6112-7_2]
    Potts, M. 1999. Mechanisms of desiccation tolerance in cyanobacteria. European Journal of Phycology, 34(4), 319-328. [doi: 10.1017/S0967026299002267]
    Ren, H. Q., Zhang, P., Liu, C. H., Xue, Y. R., and Lian, B. 2010. The potential use of bacterium strain R219 for controlling of the bloom-forming cyanobacteria in freshwater lake. World Journal of Microbiology and Biotechnology, 26(3), 465-472. [doi: 10.1007/s11274-009-0192-2]
    Sengco, M. R., and Anderson, D. M. 2004. Controlling harmful algal blooms through clay flocculation. Journal of Eukaryotic Microbiology, 51(2), 169-172. [doi: 10.1111/j.1550-7408.2004.tb00541.x]
    Sigee, D. C., Glenn, R., Andrews, M. J., Bellinger, E. G., Butler, R. D., Epton, H. A. S., and Hendry, R. D. 1999. Biological control of cyanobacteria: Principles and possibilities. Hydrobiologia, 395, 161-172. [doi: 10.1023/A:1017097502124]
    Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(1-2), 203-214. [doi: 10.1089/10665270050081478]
    Zurawell, R. W., Chen, H. R., Burke, J. M., and Prepas, E. E. 2005. Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 8(1), 1-37. [doi: 10.1080/10937400590889412]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2111) PDF downloads(2906) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return