Volume 5 Issue 4
Dec.  2012
Turn off MathJax
Article Contents
Yi-feng ZHANG, Rui-jie LI. 2012: Numerical solutions for two nonlinear wave equations. Water Science and Engineering, 5(4): 410-418. doi: 10.3882/j.issn.1674-2370.2012.04.005
Citation: Yi-feng ZHANG, Rui-jie LI. 2012: Numerical solutions for two nonlinear wave equations. Water Science and Engineering, 5(4): 410-418. doi: 10.3882/j.issn.1674-2370.2012.04.005

Numerical solutions for two nonlinear wave equations

doi: 10.3882/j.issn.1674-2370.2012.04.005
Funds:  This work was supported by the Central Public-Interest Scientific Institution Basal Research Fund of China (Grant No. TKS100108).
More Information
  • Corresponding author: Yi-feng ZHANG
  • Received Date: 2010-10-20
  • Rev Recd Date: 2012-09-06
  • The split-step pseudo-spectral method is a useful method for solving nonlinear wave equations. However, it is not widely used because of the limitation of the periodic boundary condition. In this paper, the method is modified at its second step by avoiding transforming the wave height function into a frequency domain function. Thus, the periodic boundary condition is not required, and the new method is easy to implement. In order to validate its performance, the proposed method was used to solve the nonlinear parabolic mild-slope equation and the spatial modified nonlinear Schrödinger (MNLS) equation, which were used to model the wave propagation under different bathymetric conditions. Good agreement between the numerical and experimental results shows that the present method is effective and efficient in solving nonlinear wave equations.

     

  • loading
  • Berkhoff, J. C. W., Booij, N., and Radder, A. C. 1982. Verification of numerical wave propagation models for simple harmonic linear water waves. Coastal Engineering, 6(3), 255-279.[doi:10.1016/0378-3839(82) 90022-9]
    Canney, N. E., and Carter, J. D. 2007. Stability of plane waves on deep water with dissipation. Mathematics and Computers in Simulation, 74(2-3), 159-167. [doi: 10.1016/j.matcom.2006.10.010]
    Dysthe, K. B. 1979. Note on a modification to the nonlinear Schröedinger equations for application to deep water waves. Proceedings of the Royal Society of London, Series A: Mathematical Physical and Engineering Sciences, 369(1736), 105-114. [doi: 10.1098/rspa.1979.0154]
    Hsu, T. W., Chang, J. Y., Lan, Y. J., Lai, J. W., and Ou, S. H. 2008. A parabolic equation for wave propagation over porous structures. Coastal Engineering, 55(12), 1148-1158. [doi: 10.1016/j.coastaleng.2008.05.004]
    Keller, J. B. 1982. Experiments on Nonlinear Wave Interaction. California: Stanford University.
    Kirby, J. T., and Dalrymple, R. A. 1983. A parabolic equation for the combined refraction-diffraction of Stokes waves by mildly varying topography. Journal of Fluid Mechanics,136(1), 453-466. [doi:10.1017/ S0022112083002232]
    Li, R. J., Yan, Y. X., and Cao, H. S. 2003. Nonlinear dispersion relation in wave transformation. China Ocean Engineering,17(1), 117-122.
    Lin, G., Qiu, D. H., and Zou, Z. L. 1998. Numerical simulation of parabolic mild-slope equations. Journal of Dalian University of Technology, 38(3), 328-331. (in Chinese)
    Lo, E., and Mei, C. C. 1987. Slow evolution of nonlinear deep water waves in two horizontal directions: A numerical study. Wave Motion, 9(3), 245-259. [doi: 10.1016/0165-2125(87)90014-X]
    Onorato, M., Osborne, A. R. Serio, M., and Bertone, S. 2001. Freak waves in random oceanic sea states. Physical Review Letters,86(25), 5831-5834. [doi: 10.1103/PhysRevLett.86.5831] 
    Radder, A. C. 1979. On the parabolic equation method for water-wave propagation. Journal of Fluid Mechanics, 95, 159-176. [doi: 10.1017/S0022112079001397]
    Scott, A. C., Chu, F. Y. F., and Mclaughlin, D. W. 1973. The soliton: A new concept in applied science. Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) International Conference, 61(10), 1443-1483. [doi: 10.1109/PROC.1973.9296]
    Tang, J., Shen, Y. M., and Cui, L. 2011. Modeling coastal water wave propagation in vegetation field based on parabolic mild slope equation. Acta Oceanologica Sinica,33(1), 8-11. (in Chinese)
    Trulsen, K., and Stansberg, C. T. 2001. Spatial evolution of water surface waves: Numerical simulation and experiment of bichromatic waves. Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference. Stavanger: The International Society of Offshore and Polar Engineers.
    Zhang, Y. Q., Zhang, N. C., andHu, J. P.2007a. Numerical simulation and mechanism analysis of freak waves. Acta Oceanologica Sinica,26(5), 16-124.
    Zhang, Y. Q., Zhang, N. C., and Pei, Y. G. 2007b. Numerical simulation of freak waves based on the four-order nonlinear Schrödinger equation. China Ocean Engineering, 21(2), 207-214.
    Zhao, H. J., Song, Z. Y., Xu, F. M., and Li, R. J. 2009. A time-dependent numerical model of the extended mild-slope equation. Journal of Hydrodynamics,Ser. A, 24(4), 503-511. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2041) PDF downloads(2419) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return