Volume 5 Issue 4
Dec.  2012
Turn off MathJax
Article Contents
Ya-long ZHOU, Zhi-li ZOU, Kai YAN. 2012: Experimental study on modulational instability and evolution of crescent waves. Water Science and Engineering, 5(4): 419-427. doi: 10.3882/j.issn.1674-2370.2012.04.006
Citation: Ya-long ZHOU, Zhi-li ZOU, Kai YAN. 2012: Experimental study on modulational instability and evolution of crescent waves. Water Science and Engineering, 5(4): 419-427. doi: 10.3882/j.issn.1674-2370.2012.04.006

Experimental study on modulational instability and evolution of crescent waves

doi: 10.3882/j.issn.1674-2370.2012.04.006
Funds:  This work was supported by the National Natural Science Foundation of China (Grant No. 51079024) and the National Foundation for Creative Research Groups (Grant No. 50921001).
More Information
  • Corresponding author: Ya-long ZHOU
  • Received Date: 2011-10-18
  • Rev Recd Date: 2011-12-26
  • A series of experiments on the instability of steep water wave trains in water with finite water depths and infinite water depths in a wide wave basin were performed. It was found that under the coupled development of modulational instability and class-II instability, the initial two-dimensional steep wave trains evolved into three-dimensional crescent waves, followed by the occurrence of disordered water surfaces, and that the wave energy transferred to sidebands in the amplitude spectrum of the water surface elevation. The results also show that water depth has a significant effect on the growth of modulational instability and the evolution of crescent waves. The larger the water depth, the more quickly the modulational instability suppresses class-II instability.

     

  • loading
  • Akhmediev, N., and Ankiewicz, A. 2011. Modulation instability, Fermi-Pasta-Ulam recurrence, rogue waves, nonlinear phase shift, and exact solutions of the Ablowitz-Ladik equation. Physical Review E, 83(4), 46603-46613. [doi: 10.1103/PhysRevE.83.046603]
    Annenkov, S. Y., and Shrira, V. I. 2001. Numerical modelling of water-wave evolution based on the Zakharov equation. Journal of Fluid Mechanics [doi:10.1017/S0022112001006139], 449, 341-371.
    B e n j a m i n , T . B . , a n d F e i r , J . E . 1 9 6 7 . T h e d i s i n t e g r a t i o n o f w a v e t r a i n s o n d e e p w a t e r , P a r t 1 : T h e o r y . < e m > J o u r n a l o f F l u i d M e c h a n i c s 1 0 . 1 0 1 7 / S 0 0 2 2 1 1 2 0 6 7 0 0 0 4 5 X ] < / e m > , 2 7 ( 3 ) , 4 1 7 - 4 3 0 . [ d o i :
    Chiang, W. S., and Hwung, H. H. 2007. Steepness effect on modulation instability of the nonlinear wave train. Physics of Fluids, 19(1), 1-13. [doi: 10.1063/1.2433941]
    Collard, F., and Caulliez, G. 1999. Oscillating crescent-shaped water wave patterns. Physics of Fluids, 11(11), 3195-3197. [doi: 10.1063/1.870215]
    Fructus, D., Clamond, D., Grue, J., and Kristiansen, Ø. 2005. An efficient model for three-dimensional surface waves simulations, Part I: Free space problem. Journal of Computational Physics, 205(2), 665-685. [doi: 10.1016/j.jcp.2004.11.027]
    Fuhrman, D. R., Madsen, P. A., and Bingham, H. B. 2004. A numerical study of crescent waves. Journal of Fluid Mechanics, 513, 309-341. [doi: 10.1017/S0022112004000060]
    Hwung, H. H., Chiang, W. S., and Hsiao, S. C. 2007. Observations on the evolution of wave modulation. Proceedings of the Royal Society of London, Series A, Mathematical, Physical and Engineering Sciences, 463(2077), 85-112. [doi: 10.1098/rspa.2006.1759]
    Kusuba, T., and Mitsuyasu, M. 1986. Nonlinear instability and evolution of steep water waves under wind action. Reports of the Research Institute for Applied Mechanics,33, 33-64.
    Ma, Y., Dong, G., Perlin, M., Ma, X., Wang, G., and Xu, J. 2010. Laboratory observations of wave evolution, modulation and blocking due to spatially varying opposing currents. Journal of Fluid Mechanics, 661, 108-129. [doi: 10.1017/S0022112010002880]
    McLean, J. W. 1982a. Instabilities of finite-amplitude water waves. Journal of Fluid Mechanics, 114, 315-330. [doi: 10.1017/S0022112082000172]
    McLean, J. W. 1982b. Instabilities of finite-amplitude gravity waves on water of finite depth. Journal of Fluid Mechanics, 114, 331-341. [doi: 10.1017/S0022112082000184]
    Melville, W. K. 1982. The instability and breaking of deep-water waves. Journal of Fluid Mechanics, 115, 165-185. [doi: 10.1017/S0022112082000706]
    Shrira, V. I., Badulin, S. I., and Kharif, C. 1996. A model of water wave ‘horse-shoe’ patterns. Journal of Fluid Mechanics, 318, 375-405. [doi: 10.1017/S0022112096007161]
    Stiassnie, M., and Shemer, L. 1987. Energy computations for evolution of class I and II instabilities of Stokes waves. Journal of Fluid Mechanics, 174, 299-312. [doi: 10.1017/S0022112087000132]
    Su, M. Y. 1982. Three dimensional deep-water waves, Part 1: Experimental measurement of skew and symmetric wave patterns. Journal of Fluid Mechanics, 124, 73-108. [doi:10.1017/ S0022112082002419]
    Su, M. Y., Bergin, M., Marler, P., and Myrick, R. 1982. Experiments on nonlinear instabilities and evolution of steep gravity-wave trains. Journal of Fluid Mechanics, 124, 45-72. [doi:10.1017/ S0022112082002407]
    Su, M. Y., and Green, A. W. 1984. Coupled two- and three-dimensional instabilities of surface gravity waves. Physics of Fluids, 27(11), 2595-2597. [doi: 10.1063/1.864556]
    Su, M. Y., and Green, A. W. 1985. Wave breaking and nonlinear instability coupling. Toba, Y., and Mitsuyasu, H., eds., The ocean Surface: Wave breaking, Turbulent Mixing and Radio Probing. Dordrecht: D. Reidel Publishing Company.
    Tulin, M. P., and Waseda, T. 1999. Laboratory observations of wave group evolution, including breaking effects. Journal of Fluid Mechanics, 378, 197-232. [doi: 10.1017/S0022112098003255]
    Wu, M., and Patton, C. E. 2007. Experimental observation of Fermi-Pasta-Ulam recurrence in a nonlinear feedback ring system. Physical Review Letters,98(4), 47202-47205. [doi:10.1103/PhysRevLett.98. 047202]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2287) PDF downloads(2139) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return