Volume 11 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
Feng-peng Bai, Zhong-hua Yang, Wu-gang Zhou. 2018: Study of total variation diminishing (TVD) slope limiters in dam-break flow simulation. Water Science and Engineering, 11(1): 68-74. doi: 10.1016/j.wse.2017.09.004
Citation: Feng-peng Bai, Zhong-hua Yang, Wu-gang Zhou. 2018: Study of total variation diminishing (TVD) slope limiters in dam-break flow simulation. Water Science and Engineering, 11(1): 68-74. doi: 10.1016/j.wse.2017.09.004

Study of total variation diminishing (TVD) slope limiters in dam-break flow simulation

doi: 10.1016/j.wse.2017.09.004
Funds:  This work was supported by the National Natural Science Foundation of China (Grants No. 51679170, 51379157, and 51439007).
  • Received Date: 2017-01-14
  • Rev Recd Date: 2017-03-13
  • A two-dimensional (2D) dam-break flow numerical model was developed based on the finite-volume total variation diminishing (TVD) and monotone upstream-centered scheme for conservation laws (MUSCL)-Hancock scheme, which has second-order accuracy in both time and space. A Harten-Lax-van Leer-contact (HLLC) approximate Riemann solver was used to evaluate fluxes. The TVD MUSCL-Hancock numerical scheme utilizes slope limiters, such as the minmod, double minmod, superbee, van Albada, and van Leer limiters, to prevent spurious oscillations and maintain monotonicity near discontinuities. A comparative study of the impact of various slope limiters on the accuracy of the numerical flow model was conducted with several dam-break examples including wet and dry bed cases. The numerical results of the superbee and double minmod limiters agree better with the theoretical solution and have higher accuracy than other limiters in one-dimensional (1D) space. The ratio of the downstream water depth to the upstream water depth was used to select the proper slope limiter. For the 2D numerical model, the superbee limiter should not be used, owing to significant numerical dispersion.

     

  • loading
  • Aliparast, M., 2009. Two-dimensional finite volume method for dam-break flow simulation. International Journal of Sediment Research 24(1), 99-107. https://doi.org/10.1016/S1001-6279(09)60019-6.
    Ata, R., Pavan, S., Khelladi, S., Toro, E.F., 2013. A weighted average flux (WAF) scheme applied to shallow water equations for real-life applications. Advances in Water Resources 62, 155-172. https://doi.org/10.1016/j.advwatres.2013.09.019.
    Causon, D.M., Ingram, D.M., Mingham, C.G., Yang, G., Pearson, R.V., 2000. Calculation of shallow water flows using a Cartesian cut cell approach. Advances in Water Resources 23(5), 545-562. https://doi.org/10.1016/S0309-1708(99)00036-6.
    Erduran, K.S., Kutija, V., Hewett, J.M., 2002. Performance of finite volume solutions to the shallow water equations with shock-capturing schemes. International Journal for Numerical Methods in Fluids 40(10), 1237-1273. https://doi.org/10.1002/fld.402.
    Fraccarollo, L., Capart, H., Zech, Y., 2003. A Godunov method for the computation of erosional shallow water transients. International Journal for Numerical Methods in Fluids 41(9), 951-976. https://doi.org/10.1002/fld.475.
    Harten, A., Lax, P.D., van Leer, B., 1983. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review 25(1), 35-61. https://doi.org/ 10.1137/1025002.
    García-Navarro, P., Vázquez-Cendón, M.E., 2000. On numerical treatment of the source terms in the shallow water equations. Computer and Fluids 29(8), 951-979. https://doi.org/10.1016/S0045-7930(99)00038-9.
    Kim, D.H., Cho, Y.S., Kim, H.J., 2008. Well-balanced scheme between flux and source terms for computational of shallow-water equations over irregular bathymetry. Journal of Engineering Mechanics 134(4), 277-290. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:4(277).
    Kim, H.J., Cho, Y.S., 2011. Numerical model for flood routing with a Cartesian cut-cell domain. Journal of Hydraulic Research 49(2), 205-212. https://doi.org/10.1080/00221686.2010.547037.
    Liang, Q., Borthwick, A.G.L., Stelling, G., 2004. Simulation of dam- and dyke-break hydrodynamics on dynamically adaptive quadtree grids. International Journal for Numerical Methods in Fluids 46(2), 127-162. https://doi.org/10.1002/fld.748.
    Liang, Q.H., 2011. A structured but non-uniform Cartesian grid-based model for the shallow water equations. International Journal for Numerical Methods in Fluids 66(5), 537-554. https://doi.org/10.1002/fld.2266.
    Pu, J.H., Cheng, N.S., Tan, S.K., Shao, S.D., 2012. Source term treatment of SWEs using surface gradient upwind method. Journal of Hydraulic Research 50(2), 144-153. https://doi.org/10.1080/00221686.2011.649838.
    Sanders, B.F., Bradford, S.F., 2006. Impact of limiters on accuracy of high-resolution flow and transport models. Journal of Engineering Mechanics 132(1), 87-98. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:1(87).
    Sweby, P.K., 1984. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal on Numerical Analysis 21(5), 995-1011. https://doi.org/10.1137/0721062.
    Toro, E.F., 1999. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, second ed. Springer, Berlin.
    Toro, E.F., 2001. Shock-capturing Methods for Free-surface Shallow Flows. John Wiley & Sons, Chichester.
    van Albada, G.D., van Leer, B., Roberts, W.W., 1982. A comparative study of computational methods in cosmic gas dynamics. Astronomy and Astrophysics 108(1), 76-84.
    van Leer, B., 1974. Towards the ultimate conservative difference scheme, II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics 14(4), 361-370. https://doi.org/10.1016/0021-9991(74)90019-9.
    van Leer, B., 1979. Towards the ultimate conservative difference scheme, V. A second-order sequel to Godunov’s method. Journal of Computational Physics 32(1), 101-136. https://doi.org/10.1016/0021-9991(79)90145-1.
    Wu, W.M., Marsooli, R., 2014. A depth-averaged 2D shallow water model for breaking and non-breaking long waves affected by rigid vegetation. Journal of Hydraulic Research 50(6), 557-575. https://doi.org/10.1080/00221686.2012.734534.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (687) PDF downloads(1018) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return