Citation: | Feng-peng Bai, Zhong-hua Yang, Wu-gang Zhou. 2018: Study of total variation diminishing (TVD) slope limiters in dam-break flow simulation. Water Science and Engineering, 11(1): 68-74. doi: 10.1016/j.wse.2017.09.004 |
Aliparast, M., 2009. Two-dimensional finite volume method for dam-break flow simulation. International Journal of Sediment Research 24(1), 99-107. https://doi.org/10.1016/S1001-6279(09)60019-6.
|
Ata, R., Pavan, S., Khelladi, S., Toro, E.F., 2013. A weighted average flux (WAF) scheme applied to shallow water equations for real-life applications. Advances in Water Resources 62, 155-172. https://doi.org/10.1016/j.advwatres.2013.09.019.
|
Causon, D.M., Ingram, D.M., Mingham, C.G., Yang, G., Pearson, R.V., 2000. Calculation of shallow water flows using a Cartesian cut cell approach. Advances in Water Resources 23(5), 545-562. https://doi.org/10.1016/S0309-1708(99)00036-6.
|
Erduran, K.S., Kutija, V., Hewett, J.M., 2002. Performance of finite volume solutions to the shallow water equations with shock-capturing schemes. International Journal for Numerical Methods in Fluids 40(10), 1237-1273. https://doi.org/10.1002/fld.402.
|
Fraccarollo, L., Capart, H., Zech, Y., 2003. A Godunov method for the computation of erosional shallow water transients. International Journal for Numerical Methods in Fluids 41(9), 951-976. https://doi.org/10.1002/fld.475.
|
Harten, A., Lax, P.D., van Leer, B., 1983. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review 25(1), 35-61. https://doi.org/ 10.1137/1025002.
|
García-Navarro, P., Vázquez-Cendón, M.E., 2000. On numerical treatment of the source terms in the shallow water equations. Computer and Fluids 29(8), 951-979. https://doi.org/10.1016/S0045-7930(99)00038-9.
|
Kim, D.H., Cho, Y.S., Kim, H.J., 2008. Well-balanced scheme between flux and source terms for computational of shallow-water equations over irregular bathymetry. Journal of Engineering Mechanics 134(4), 277-290. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:4(277).
|
Kim, H.J., Cho, Y.S., 2011. Numerical model for flood routing with a Cartesian cut-cell domain. Journal of Hydraulic Research 49(2), 205-212. https://doi.org/10.1080/00221686.2010.547037.
|
Liang, Q., Borthwick, A.G.L., Stelling, G., 2004. Simulation of dam- and dyke-break hydrodynamics on dynamically adaptive quadtree grids. International Journal for Numerical Methods in Fluids 46(2), 127-162. https://doi.org/10.1002/fld.748.
|
Liang, Q.H., 2011. A structured but non-uniform Cartesian grid-based model for the shallow water equations. International Journal for Numerical Methods in Fluids 66(5), 537-554. https://doi.org/10.1002/fld.2266.
|
Pu, J.H., Cheng, N.S., Tan, S.K., Shao, S.D., 2012. Source term treatment of SWEs using surface gradient upwind method. Journal of Hydraulic Research 50(2), 144-153. https://doi.org/10.1080/00221686.2011.649838.
|
Sanders, B.F., Bradford, S.F., 2006. Impact of limiters on accuracy of high-resolution flow and transport models. Journal of Engineering Mechanics 132(1), 87-98. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:1(87).
|
Sweby, P.K., 1984. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal on Numerical Analysis 21(5), 995-1011. https://doi.org/10.1137/0721062.
|
Toro, E.F., 1999. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, second ed. Springer, Berlin.
|
Toro, E.F., 2001. Shock-capturing Methods for Free-surface Shallow Flows. John Wiley & Sons, Chichester.
|
van Albada, G.D., van Leer, B., Roberts, W.W., 1982. A comparative study of computational methods in cosmic gas dynamics. Astronomy and Astrophysics 108(1), 76-84.
|
van Leer, B., 1974. Towards the ultimate conservative difference scheme, II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics 14(4), 361-370. https://doi.org/10.1016/0021-9991(74)90019-9.
|
van Leer, B., 1979. Towards the ultimate conservative difference scheme, V. A second-order sequel to Godunov’s method. Journal of Computational Physics 32(1), 101-136. https://doi.org/10.1016/0021-9991(79)90145-1.
|
Wu, W.M., Marsooli, R., 2014. A depth-averaged 2D shallow water model for breaking and non-breaking long waves affected by rigid vegetation. Journal of Hydraulic Research 50(6), 557-575. https://doi.org/10.1080/00221686.2012.734534.
|