Citation: | Shao-feng Yan, Shuang-en Yu, Yu-bai Wu, De-feng Pan, Jia-gen Dong. 2018: Understanding groundwater table using a statistical model. Water Science and Engineering, 11(1): 1-7. doi: 10.1016/j.wse.2018.03.003 |
Apaydin, A., 2010. Response of groundwater to climate variation: Fluctuations of groundwater level and well yields in the Halacli aquifer (Cankiri, Turkey). Environmental Monitoring and Assessment. 165(1-4), 653–663. http://dx.doi.org/10.1007/s10661-009-0976-8.
|
Du, W., Wei, X.M., Li, P., Li, P., Han, Y.Z., 2013. Dynamic evolutionary tendency of groundwater in irrigation district in changing environment and its driving factors. Journal of Drainage and Irrigation Machinery Engineering. 31(11), 993–999. http://dx.doi.org/10.3969/j.issn.1674-8530.2013.11.014.
|
Ferdowsian, R., Pannell, D.J., McCarron, C., Ryder, A., Crossing, L., 2001. Explaining groundwater hydrographs: Separating atypical rainfall events from time trends. Soil Research. 39(4), 861-876. http://dx.doi.org/10.1071/SR00037.
|
Gong, Z.N, Gong, H.L., Deng, W., Zhao, W.J., 2006. An overview of water movement in groundwater-soil-plant-atmosphere continuum with shallow water table. Journal of Agro-Environment Science. 25, 365–373 (in Chinese).
|
Hu, H.B., Lin, W.D., Zhang, J.C., 1992. The research of soil erosion regularities in Jiangsu coastal plain sandy area. Journal of Nanjing Forestry University (Natural Science Edition). 16(2), 25–30. http://dx.doi.org/10.3969/j.jssn.1000-2006.1992.02.006 (in Chinese).
|
Jan, C.D., Chen, T.H., Huang, H.M., 2013. Analysis of rainfall-induced quick groundwater-level response by using a Kernel function. Paddy and Water Environment. 11(1-4), 135–144. http://dx.doi.org/10.1007/s10333-011-0299-6.
|
Kong, J., Xin, P., Hua, G.F., Luo, Z.Y., Shen, C.J., Chen, D., Li, L., 2015. Effects of vadose zone on groundwater table fluctuations in unconfined aquifers. Journal of Hydrology. 528, 397-407. http://dx.doi.org/10.1016/j.jhydrol.2015.06.045.
|
Nayak, P.C., Satyaji Rao, Y.R., Sudheer, K.P., 2006. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management. 20(1), 77-90. http://dx.doi.org/10.1007/s11269-006-4007-z.
|
Praveena, S.M., Abdullah, M.H., Bidin, K., Aris, A.Z., 2011. Understanding of groundwater salinity using statistical modeling in a small tropical island, East Malaysia. The Environmentalist. 31(3), 279-287. http://dx.doi.org/10.1007/s10669-011-9332-y.
|
Salameh, E., El-Naser, H., 2000. Changes in the Dead Sea level and their impacts on the surrounding groundwater bodies. Acta hydrochim. hydrobiol. 28(1), 24–33. http://dx.doi.org/10.1002/(SICI)1521-401X(200001)28:1<24::AID-AHEH24>3.0.CO;2-6.
|
She, D.L., Fei, Y.H., Liu, Z.P., Liu, D.D., Shao, G.C., 2014. Soil erosion characteristics of ditch banks during reclamation of a saline/sodic soil in a coastal region of China: Field investigation and rainfall simulation. Catena. 121(5), 176–185. http://dx.doi.org/10.1016/j.catena.2014.05.010.
|
Sherif, M.M., Singh, V.P., 1999. Effect of climate change on sea water intrusion in coastal aquifers. Hydrological Processes. 13(8), 1277–1287. http://dx.doi.org/10.1002/(SICI)1099-1085(19990615)13:8<1277::AID-HYP765>3.0.CO;2-W.
|
Wang, S.Q., Song, X.F., Wang, Q.X., Xiao, G.Q., Wang, Z.M., Liu, X., Wang, P., 2012. Shallow groundwater dynamics and origin of salinity at two sites in salinated and water-deficient region of North China Plain, China. Environmental Earth Sciences. 66(3), 729–739. http://dx.doi.org/10.1007/s12665-011-1280-9.
|
Wang, Y.N., Gao, G.Q., Cai, M.K., 2010. Dynamic prediction for groundwater level in Baoji Urban District based on multiple regression analysis. Journal of Water Resources and Architectural Engineering. 8(5), 101–102 (in Chinese).
|
Xi, H.Y., Feng, Q., Si, J.H., Chang, Z.Q., Cao, S.K., 2010. Impacts of river recharge on groundwater level and hydrochemistry in the lower reaches of Heihe River Watershed, northwestern China. Hydrogeology Journal. 18(3), 791–801. http://dx.doi.org/10.1007/s10040-009-0562-8.
|
Yang, J.F., Li, T.B, Li, Y., 1997. The application of zero flux plane method in groundwater resources evaluation in Shenyang area. World Geology. 16(2), 55–60 (in Chinese).
|
Yu, X., Ghasemizadeh, R., Padilla, I.Y., Kaeli, D., Alshawabkeh, A., 2016. Patterns of temporal scaling of groundwater level fluctuation. Journal of Hydrology. 536, 485-495. http://dx.doi.org/10.1016/j.jhydrol.2016.03.018.
|
Zhou, P.P., Li, G.M., Lu, Y.D., Li, M., 2013. Numerical modeling of the effects of beach slope on water-table fluctuation in the unconfined aquifer of Donghai Island, China. Hydrogeology Journal. 22(2), 383–396. http://dx.doi.org/10.1007/s10040-013-1045-5.
|
Zhou, X., Ruan, C.X., Yang, Y.Y., Fang, B., Ou, Y.C., 2006. Tidal effects of groundwater levels in the coastal aquifers near Beihai, China. Environmental Geology. 51(4), 517–525. http://dx.doi.org/10.1007/s00254-006-0348-4.
|