Volume 11 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
Ghorban Mahtabi, Hadi Arvanaghi. 2018: Experimental and numerical analysis of flow over a rectangular full-width sharp-crested weir. Water Science and Engineering, 11(1): 75-80. doi: 10.1016/j.wse.2018.03.004
Citation: Ghorban Mahtabi, Hadi Arvanaghi. 2018: Experimental and numerical analysis of flow over a rectangular full-width sharp-crested weir. Water Science and Engineering, 11(1): 75-80. doi: 10.1016/j.wse.2018.03.004

Experimental and numerical analysis of flow over a rectangular full-width sharp-crested weir

doi: 10.1016/j.wse.2018.03.004
More Information
  • Author Bio:

    ghmahtabi@gmail.com (Ghorban Mahtabi)

  • Corresponding author: ghmahtabi@gmail.com (Ghorban Mahtabi)
  • Received Date: 2016-05-16
  • Rev Recd Date: 2017-05-08
  • Weirs are a type of hydraulic structure, used for water level adjustment, flow measurement, and diversion of water in irrigation systems. In this study, experiments were conducted on sharp-crested weirs under free-flow conditions and an optimization method was used to determine the best form of the discharge coefficient equation based on the coefficient of determination (R2) and root mean square error (RMSE). The ability of the numerical method to simulate the flow over the weir was also investigated using Fluent software. Results showed that, with an increase of the ratio of the head over the weir crest to the weir height (h/P), the discharge coefficient decreased nonlinearly and reached a constant value of 0.7 for h/P > 0.6. The best form of the discharge coefficient equation predicted the discharge coefficient well and percent errors were within a ±5% error limit. Numerical results of the discharge coefficient showed strong agreement with the experimental data. Variation of the discharge coefficient with Reynolds numbers showed that the discharge coefficient reached a constant value of 0.7 when h/P > 0.6 and Re > 20000.

     

  • loading
  • Aliparast, M., 2009. Two-dimensional finite volume method for dam-break flow simulation. International Journal of Sediment Research 24(1), 99-107. https://doi.org/10.1016/S1001-6279(09)60019-6.
    Ata, R., Pavan, S., Khelladi, S., Toro, E.F., 2013. A weighted average flux (WAF) scheme applied to shallow water equations for real-life applications. Advances in Water Resources 62, 155-172. https://doi.org/10.1016/j.advwatres.2013.09.019.
    Causon, D.M., Ingram, D.M., Mingham, C.G., Yang, G., Pearson, R.V., 2000. Calculation of shallow water flows using a Cartesian cut cell approach. Advances in Water Resources 23(5), 545-562. https://doi.org/10.1016/S0309-1708(99)00036-6.
    Erduran, K.S., Kutija, V., Hewett, J.M., 2002. Performance of finite volume solutions to the shallow water equations with shock-capturing schemes. International Journal for Numerical Methods in Fluids 40(10), 1237-1273. https://doi.org/10.1002/fld.402.
    Fraccarollo, L., Capart, H., Zech, Y., 2003. A Godunov method for the computation of erosional shallow water transients. International Journal for Numerical Methods in Fluids 41(9), 951-976. https://doi.org/10.1002/fld.475.
    Harten, A., Lax, P.D., van Leer, B., 1983. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review 25(1), 35-61. https://doi.org/ 10.1137/1025002.
    García-Navarro, P., Vázquez-Cendón, M.E., 2000. On numerical treatment of the source terms in the shallow water equations. Computer and Fluids 29(8), 951-979. https://doi.org/10.1016/S0045-7930(99)00038-9.
    Kim, D.H., Cho, Y.S., Kim, H.J., 2008. Well-balanced scheme between flux and source terms for computational of shallow-water equations over irregular bathymetry. Journal of Engineering Mechanics 134(4), 277-290. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:4(277).
    Kim, H.J., Cho, Y.S., 2011. Numerical model for flood routing with a Cartesian cut-cell domain. Journal of Hydraulic Research 49(2), 205-212. https://doi.org/10.1080/00221686.2010.547037.
    Liang, Q., Borthwick, A.G.L., Stelling, G., 2004. Simulation of dam- and dyke-break hydrodynamics on dynamically adaptive quadtree grids. International Journal for Numerical Methods in Fluids 46(2), 127-162. https://doi.org/10.1002/fld.748.
    Liang, Q.H., 2011. A structured but non-uniform Cartesian grid-based model for the shallow water equations. International Journal for Numerical Methods in Fluids 66(5), 537-554. https://doi.org/10.1002/fld.2266.
    Pu, J.H., Cheng, N.S., Tan, S.K., Shao, S.D., 2012. Source term treatment of SWEs using surface gradient upwind method. Journal of Hydraulic Research 50(2), 144-153. https://doi.org/10.1080/00221686.2011.649838.
    Sanders, B.F., Bradford, S.F., 2006. Impact of limiters on accuracy of high-resolution flow and transport models. Journal of Engineering Mechanics 132(1), 87-98. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:1(87).
    Sweby, P.K., 1984. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal on Numerical Analysis 21(5), 995-1011. https://doi.org/10.1137/0721062.
    Toro, E.F., 1999. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, second ed. Springer, Berlin.
    Toro, E.F., 2001. Shock-capturing Methods for Free-surface Shallow Flows. John Wiley & Sons, Chichester.
    van Albada, G.D., van Leer, B., Roberts, W.W., 1982. A comparative study of computational methods in cosmic gas dynamics. Astronomy and Astrophysics 108(1), 76-84.
    van Leer, B., 1974. Towards the ultimate conservative difference scheme, II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics 14(4), 361-370. https://doi.org/10.1016/0021-9991(74)90019-9.
    van Leer, B., 1979. Towards the ultimate conservative difference scheme, V. A second-order sequel to Godunov’s method. Journal of Computational Physics 32(1), 101-136. https://doi.org/10.1016/0021-9991(79)90145-1.
    Wu, W.M., Marsooli, R., 2014. A depth-averaged 2D shallow water model for breaking and non-breaking long waves affected by rigid vegetation. Journal of Hydraulic Research 50(6), 557-575. https://doi.org/10.1080/00221686.2012.734534.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (814) PDF downloads(880) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return