Citation: | Wei Li, Hui-yan Zhang, Hui-zhi Sun, Fei Zeng, Yu-nan Gao, Lei Zhu. 2018: Influence of pH on short-cut denitrifying phosphorus removal. Water Science and Engineering, 11(1): 17-22. doi: 10.1016/j.wse.2018.03.006 |
Chua, A.S.M., Takabatake, H., Satoh, H., Mino, T., 2013. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: Effect of pH, sludge retention time (SRT), and acetate concentration in influent. Water Research, 37(15), 3602–3611. https://doi.org/10.1016/s0043-1354(03)00252-5.
|
Deng, Q.Q., 2011. Technique of short-cut denitrifying dephosphorization and its study progress. Guangdong Chemical Industry, 3, 34–35 (in Chinese).
|
Ding, W.C., Li, Q., Ji, F.Y., Tian, X.M., Wu, D., Du, Y., 2010. Shortcut nitrification-denitrification and denitrifying phosphorus removal in two-sludge SBR system. China Water and Wastewater, 26(13), 11–14 (in Chinese).
|
Fleit, E., 1995. Intracellular pH regulation in biological excess phosphorous removal systems. Water Research, 29(7), 87–92. https://doi.org/10.1016/0043-1354(94)00265-9.
|
Guo, H.J., Ma, F., Shen, Y.L., 2005a. Effect of C/N ration on denitrifying dephosphatation. Acta Scientiae Circumstantiae, 25(3), 367–371. https://doi.org/10.3321/j.issn:0253-2468.2005.03.016.
|
Guo, X., Meng, Z.H., Dong, J.H., 2005b. Study on pH value effect on removal of biological phosphorus in anaerobic pool. Journal of Harbin University of Commerce (Sciences Edition), 21(3), 292–293. https://doi.org/10.19492/j.cnki.1672-0946.2005.03.009.
|
Jabari, P., Munz, G., Oleszkiewicz, J.A., 2014. Selection of denitrifying phosphorous accumulating organisms in IFAS systems: Comparison of nitrite with nitrate as an electron acceptor. Chemosphere, 109, 20–27. https://doi.org/10.1016/j.chemosphere.2014.03.002.
|
Li, J., Chai, L.Y., Xiang, R.J., Cheng, Y.X., 2011. Pilot-scale test on domestic waste water treatment using integrative A/O (anaerobic-aerobic sludge) equipment. Journal of Central South University: Science and Technology, 42(10), 2935–2940 (in Chinese).
|
Li, N., 2010. Performance and Removal Approaches of Biological Phosphorus Removal from Wastewater in SBR under Low Temperature. Ph. D. Dissertation. Harbin University of Technology, Harbin (in Chinese).
|
Li, X.K., 2006. Study on Denitrifying Phosphorus Removal Process and Microbiology Research. Ph. D. Dissertation. Harbin Institute of Technology, Harbin (in Chinese).
|
Li, X.K., Zhang, J., Huang, R.X., Ma, L., Bao. R.L., Jiang, A.X., 2006. Study on characteristic of denitrification phosphorus removal bacteria. China Water and Wastewater, 22(3), 35–39 (in Chinese).
|
Nittami, T., Oi, H., Matsumoto, K., Seviour, R.J., 2010. Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions. Journal of Biotechnology, 150, 237. https://doi.org/10.1016/j.jbiotec.2010.09.090.
|
Peng, Y.Z., 2011. SBR method for sewage biological phosphorus removal and process control. Science Press, 188–190 (in Chinese).
|
Smolders, G.J.F., van der Meij, J., van Loosdrecht, M.C.M., Heijnen, J.J., 1994. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence. Biotechnology and Bioengineering, 43(6), 461–470. https://doi.org/10.1002/bit.260430605.
|
Wang, A.J., Wu, L.H., Ren, N.Q., Zhao, D., Yan, M.L., 2005. Feasibility of denitrifying phosphorus removal technique using nitrite as electron acceptor. China Environmental Science, 25(5), 515–518 (in Chinese).
|
Wang, J.H., Peng, Y.Z., Chen, Y.Z., 2011a. Experimental research on suspended aerobic biofilm A2O system for treating domestic wastewater. Journal of Central South University: Science and Technology, 42(12), 3918–3922 (in Chinese).
|
Wang, Y.Y., Geng, J.J., Ren, Z.J., He, W.T., Xing, M.Y., Wu, M., Chen, X.W., 2011b. Effect of anaerobic reaction time on denitrifying phosphorus removal and N2O production. Bioresource Technology, 102(10), 5674–5684. https://doi.org/10.1016/j.biortech.2011.02.080.
|
Wang, Y.Y., Geng, J.J., Guo, G., Wang, C., Liu, S.H., 2011c. N2O production in anaerobic/anoxic denitrifying phosphorus removal process: The effects of carbon sources shock. Chemical Engineering Journal, 172(2–3), 999–1007. https://doi.org/10.1016/j.cej.2011.07.014.
|
Wang, Y.Y., Zhou, S., Liu, Y., Wang, H., Stephenson, T., Jiang, X.X., 2014. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors. Water Research, 67, 33–45. https://doi.org/10.1016/j.watres.2014.08.052.
|
Wu, C.Y., 2010. A2/O Denitrifying Phosphorus Process and Its Optimal Control. Ph. D. Dissertation. Harbin University of Technology, Harbin (in Chinese).
|
Yang, Y.Y., Zeng, W., Liu, J.R., Li, L., Wang, X.D., 2010. Effect of nitrite on biological phosphorus removal in wastewater. Microbiology China, 37(4), 586–593. https://doi.org/10.13344/j.microbiol.china.2010.04.013 (in Chinese).
|
Zafiriadis, I., Ntougias, S., Nikolaidis, C., Kapagiannidis, A.G., Aivasidis, A., 2011. Denitrifying polyphosphate accumulating organisms population and nitrite reductase gene diversity shift in a DEPHANOX-type activated sludge system fed with municipal wastewater. Journal of Bioscience and Bioengineering, 111(2), 185–192. https://doi.org/10.1016/j.jbiosc.2010.09.016.
|
Zeng, W., Li, L., Yang, Y..Y., Wang, X.D., Peng, Y.Z., 2011. Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic-anoxic-aerobic (A2O) process treating domestic wastewater. Enzyme and Microbial Technology, 48(2), 134–142. https://doi.org/10.1016/j.enzmictec.2010.10.010.
|
Zhou, K.Q., Liu, H., Sun, Y.F., Zhou, Y.P., Liu, J.P., 2007. Screening and enrichment of denitrifying phosphorus accumulating bacteria using nitrite as electronic acceptor. Environmental Engineering, 1(8), 126–131. https://doi.org/10.3969/j.issn.1673-9108.2007.08.027.
|
Zhou, S.Q., Zhang, X.J., Feng, L.Y., 2010. Effect of different types of electron acceptors on the anoxic phosphorus uptake activity of denitrifying phosphorus removing bacteria. Bioresource Technology, 101(6), 1603–1610. https://doi.org/10.1016/j.biortech.2009.09.032.
|