Volume 14 Issue 3
Sep.  2021
Turn off MathJax
Article Contents
Xin-yu Chen, Ke Zhang, Li-jun Chao, Zhi-yu Liu, Yun-huan Du, Qin Xu. 2021: Quantifying natural recharge characteristics of shallow aquifers in groundwater overexploitation zone of North China. Water Science and Engineering, 14(3): 184-192. doi: 10.1016/j.wse.2021.07.001
Citation: Xin-yu Chen, Ke Zhang, Li-jun Chao, Zhi-yu Liu, Yun-huan Du, Qin Xu. 2021: Quantifying natural recharge characteristics of shallow aquifers in groundwater overexploitation zone of North China. Water Science and Engineering, 14(3): 184-192. doi: 10.1016/j.wse.2021.07.001

Quantifying natural recharge characteristics of shallow aquifers in groundwater overexploitation zone of North China

doi: 10.1016/j.wse.2021.07.001

This work was supported by the National Key Research and Development Program of China (Grants No. 2018YFC1508101 and 2018YFC0407704), the National Natural Science Foundation of China (Grants No. 51879067 and 51879163), the Natural Science Foundation of Jiangsu Province (Grant No. BK20180022), and the Fundamental Research Funds for the Central Universities of China (Grant No. B200204038).

  • Received Date: 2021-01-05
  • Accepted Date: 2021-02-18
  • Available Online: 2021-10-11
  • To improve the accuracy of hydrological simulations in the groundwater overexploitation zone of North China, it is necessary to study the characteristics of shallow aquifer recharge on daily scale. Three shallow aquifer recharge indices were used to quantify shallow aquifer recharge in two ways. The recharge coefficient was used to quantify the amount of shallow aquifer recharge. The recharge duration and water table rise coefficient were used to quantify the recharge temporal process. The Spearman rank correlation coefficient and regression analysis were used to determine the relationships between aquifer water table depth (WTD), rainfall, and shallow aquifer recharge. The Jiangjiang River Basin, a tributary of the Haihe River, was selected as the study area. The results showed that the recharge coefficient first increased, then decreased, and finally leveled off as WTD increased. When WTD was between 5 and 6 m, the recharge coefficient reached its maximum (approximately 0.3). When WTD was greater than 10 m, the recharge coefficient remained stable (around 0.12). With regard to the sources and forms of recharge, preferential flow was dominant in the areas near the extraction wells. In contrast, plug flow became dominant in the areas distant from the wells. With the reduction of rainfall duration, the proportion of preferential flow contributing to aquifer recharge increased. With the increase of rainfall amount, the duration of aquifer recharge lengthened.


  • loading
  • Ambast, S.K., Tyagi, N.K., Raul, S.K., 2006. Management of declining groundwater in the Trans Indo-Gangetic Plain (India): Some options. Agric. Water Manag. 82(3), 279-296. https://doi.org/10.1016/j.agwat.2005.06.005.
    An, G., 2018. Study on the law of precipitation time change in Hengshui City from 1980 to 2016 based on the M-K test method. Ground Water 40(6), 174-175 (in Chinese). https://doi.org/10.3969/j.issn.1004-1184.2018.06.061.
    Beven, K., Germann, P., 1982. Macropores and water flow in soils. Water Resour. Res. 18(5), 1311-1325. https://doi.org/10.1029/WR018i005p01311.
    Chao, L.J., Zhang, K., Yang, Z.L., Wang, J.F., Lin, P.R., Liang, J.J., Li, Z.J., Gu, Z., 2021. Improving flood simulation capability of the WRF-HydroRAPID model using a multi-source precipitation merging method. J. Hydrol. 592, 125814. https://doi.org/10.1016/j.jhydrol.2020.125814.
    Chen, J., 2010. Analysis and research on the regularity of groundwater recharge from rainfall. Ground Water 32(2), 30-31 (in Chinese). https://doi.org/10.3969/j.issn.1004-1184.2010.02.012.
    Han, R.G., Yang, B., 2020. Measures to solve the problem of flood monitoring and forecasting in the Haihe River Basin. Water Resour. Dev. Res. 20(7), 29-32 (in Chinese). https://doi.org/10.13928/j.cnki.wrdr.2020.07.006.
    Healy, R.W., Cook, P.G., 2002. Using groundwater levels to estimate recharge. Hydrogeol. J. 10(1), 91-109. https://doi.org/10.1007/s10040-001-0178-0.
    Hendrickx, J.M., Flury, M., 2001. Uniform and preferential flow mechanisms in the vadose zone. In: Conceptual Models of Flow and Transport in the Fractured Vadose Zone. The National Academies Press, Washington, D.C., pp. 149-187. https://doi.org/10.17226/10102.
    Huo, S.Y., Jin, M.G., Liang, X., Lin, D., 2014. Changes of vertical groundwater recharge with increase in thickness of vadose zone simulated by onedimensional variably saturated flow model. J. Earth Sci. 25(6), 1043-1050. https://doi.org/10.1007/s12583-014-0486-7.
    Huo, W.B., Li, Z.J., Zhang, K., Wang, J.F., Yao, C., 2020. GA-PIC: An improved Green-Ampt rainfall-runoff model with a physically based infiltration distribution curve for semi-arid basins. J. Hydrol. 586, 124900. https://doi.org/10.1016/j.jhydrol.2020.124900.
    Jin, M.G., Xian, Y., Liu, Y.F., 2017. Disconnected stream and groundwater interaction: A review. Adv. Water Sci. 28(1), 149-160 (in Chinese). https://doi.org/10.14042/j.cnki.32.1309.2017.01.017.
    Kurtzman, D., Scanlon, B.R., 2011. Groundwater recharge through vertisols:Irrigated cropland vs. natural land, Israel. Vadose Zone J. 10(2), 662-674. https://doi.org/10.2136/vzj2010.0109.
    Langman, J.B., Gebhardt, F.E., Falk, S.E., 2004. Ground-Water Hydrology and Water Quality of the Southern High Plains Aquifer, Melrose Air Force Range, Cannon Air Force Base, Curry and Roosevelt Counties, New Mexico, 2002-03. U.S. Geological Survey Scientific Investigations Report 2004-5158. U.S. Department of the Interior and U.S. Geological Survey, Denver.
    Larsson, M.H., Jarvis, N.J., Torstensson, G., Kasteel, R., 1999. Quantifying the impact of preferential flow on solute transport to tile drains in a sandy field soil. J. Hydrol. 215(1-4), 116-134. https://doi.org/10.1016/S0022-1694(98)00265-0.
    Li, X.D., Zhao, Y., Xiao, W.H., Yang, M.Z., Shen, Y.J., Min, L.L., 2017. Soil moisture dynamics and implications for irrigation of farmland with a deep groundwater table. Agric. Water Manag. 192, 138-148. https://doi.org/10.1016/j.agwat.2017.07.003.
    Li, Z.J., Huang, P.N., Zhang, J.Z., Yao, C., Yao, Y.M., 2013. Construction and application of Xin’anjiang-Haihe model. J. Hohai Univ. (Nat. Sci.) 41(3), 189-195 (in Chinese). https://doi.org/10.3876/j.issn.1000-1980.2013.03.001.
    Li, Z.J., Huo, W.B., Zhang, K., 2020. Improvement and preliminary application of Green-Ampt rainfall-runoff model. J. Hohai Univ. (Nat. Sci.) 48(5), 385-391(in Chinese). https://doi.org/10.3876/j.issn.1000-1980.2020.05.001.
    Liang, J.Y., 2001. Significance and characteristics of the Second Water Resources Evaluation in Hebei Province. Hebei Water Res. (3), 33-34 (in Chinese).
    Lin, D., Jin, M.G., Liang, X., Zhan, H.B., 2013. Estimating groundwater recharge beneath irrigated farmland using environmental tracers fluoride, chloride and sulfate. Hydrogeol. J. 21(7), 1469-1480. https://doi.org/10.1007/s10040-013-1015-y.
    Lin, D., Jin, M.G., Brusseau, M.L., Liu, Y.L., Zhang, D.L., 2016. Using tracer tests to estimate vertical recharge and evaluate influencing factors for irrigated agricultural systems. Environ. Earth Sci. 75(22), 1-14. https://doi.org/10.1007/s12665-016-6242-9.
    Liu, Y.H., Zhang, K., Li, Z.J., Liu, Z.Y., Wang, J.F., Huang, P.N., 2020. A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. J. Hydrol. 590, 125440. https://doi.org/10.1016/j.jhydrol.2020.125440.
    Luo, P.P., Mu, D.R., Xue, H., Ngo-Duc, T., Dang-Dinh, K., Takara, K., Nover, D., Schladow, G., 2018. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. 8(1), 1-11. https://doi.org/10.1038/s41598-018-30024-5.
    Luo, P.P., Kang, S.X., Apip, Zhou, M.M., Lyu, J.Q., Aisyah, S., Binaya, M., Regmi, R.K., Nover, D., 2019. Water quality trend assessment in Jakarta:A rapidly growing Asian megacity. PloS One 14(7), e0219009. https://doi.org/10.1371/journal.pone.0219009.
    Meinzer, O.E., 1923. The Occurrence of Ground Water in the United States with a Discussion of Principles, vol. 50. University of Chicago, Chicago.
    Meinzer, O.E., Stearns, N.D., 1929. A Study of Ground Water in the Pomperaug Basin, Connecticut: With Special Reference to Intake and Discharge. U.S. Government Printing Office, Washington, D.C.
    Mu, D.R., Luo, P.P., Lyu, J.Q., Zhou, M.M., Huo, A.D., Duan, W.L., Nover, D., He, B., Zhao, X.L., 2020a. Impact of temporal rainfall patterns on flash floods in Hue City, Vietnam. J. Flood Risk Manag. 14(1), e12668. https://doi.org/10.1111/jfr3.12668.
    Mu, Y.X., Zhu, L., Shen, T.Q., Zhang, M., Zha, Y.Y., 2020b. Influence of correlation scale errors on aquifer hydraulic conductivity inversion precision. Water Sci. Eng. 13(3), 243-252. https://doi.org/10.1016/j.wse.2020.09.004.
    Pinos, J., Timbe, L., 2019b. Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins. Water Sci. Eng. 12(1), 11-18. https://doi.org/10.1016/j.wse.2019.03.001.
    Qian,J.,Wang,X.S.,Chen,T.F., 2013.Therelationshipbetweentheweight function of lagging recharge andthe unsaturatedzone. Hydrogeol. Eng.Geol.40(3),1-5(in Chinese). https://doi.org/10.16030/j.cnki.issn.1000-3665.2013.03.015.
    Qin, Y.D., Ren, L., Wang, J., 2000. Review on the study of macropore flow in soil. Adv. Water Sci. 11(2), 203-207 (in Chinese). https://doi.org/10.14042/j.cnki.32.1309.2000.02.017.
    Thiessen, A.H., 1911. Precipitation averages for large areas. Mon. Weather Rev. 39(7), 1082-1089. https://doi.org/10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2.
    Wang, S., Zhang, K., van Beek, L.P.H., Tian, X., Bogaard, T.A., 2020. Physically-based landslide prediction over a large region: Scaling lowresolution hydrological model results for high-resolution slope stability assessment. Environ. Model. Software 124, 104607. https://doi.org/10.1016/j.envsoft.2019.104607.
    Wu, Q.H., Liu, C.L., Zhang, W., Wang, G.L., 2013. Quantifying preferential flow during rainfall and irrigation in the North China Plain. Acta Geol. Sin.(Engl. Ed.) 87(s1), 657.
    Wu, Q.H., Liu, C.L., Liu, W.J., Zhang, M., Wang, G.L., Zhang, F.W., 2015. Quantifying the preferential flow by dye tracer in the North China Plain. J. Earth Sci. 26(3), 435-444. https://doi.org/10.1007/s12583-014-0489-4.
    Yin, L.H., Hou, G.C., Tao, Z.P., Li, Y., 2010. Origin and recharge estimates of groundwater in the ordos plateau, People's Republic of China. Environ. Earth Sci. 60(8), 1731-1738. https://doi.org/10.1007/s12665-009-0310-3.
    Zhang, G.H., Fei, Y.H., Shen, J.M., Yang, L.Z., 2007. Influence of unsaturated zone thickness on precipitation infiltration for recharge of groundwater. J. Hydraul. Eng. 38(5), 611-618 (in Chinese). https://doi.org/10.3321/j.issn:0559-9350.2007.05.016.
    Zhang, J.C., Rui, X.F., 2007. Discussion of theory and methods for building a distributed hydrologic model. Adv. Water Sci. 18(2), 286-292 (in Chinese). https://doi.org/10.3321/j.issn:1001-6791.2007.02.023.
    Zhang, K., Chao, L.J., Wang, Q.Q., Huang, Y.C., Liu, R.H., Hong, Y., Tu, Y., Qu, W., Ye, J.Y., 2019a. Using multi-satellite microwave remote sensing observations for retrieval of daily surface soil moisture across China. Water Sci. Eng. 12(2), 85-97. https://doi.org/10.1016/j.wse.2019.06.001.
    Zhang, K., Liu, L.X., Chao, L.J., Yang, J., 2019b. Spatiotemporal variations of terrestrial ecosystem water use efficiency in Yunnan Province from 2000 to 2014. Water Res. Protect. 35(5), 1-5 (in Chinese). https://doi.org/10.3880/j.issn.1004-6933.2019.05.001.
    Zhang, K., Wang, Q.Q., Chao, L.J., Ye, J.Y., Li, Z.J., Yu, Z.B., Yang, T., Ju, Q., 2019c. Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China. J. Hydrol. 574, 903-914. https://doi.org/10.1016/j.jhydrol.2019.04.087.
    Zhang, K., Niu, J.F., Li, X., Chao, L.J., 2021. Comparison of artificial intelligence flood forecasting models in China's semi-arid and semi-humid regions. Water Res. Protect. 37(1), 28-35 (in Chinese). https://doi.org/10.3880/j.issn.1004-6933.2021.01.005.
    Zhi, D.G., Jing, J.X., Li, B.G., 2005. Problems and countermeasures in hydrological forecasting of Haihe River Basin. Hebei Water Res. (12), 31 (in Chinese). https://doi.org/10.3969/j.issn.1004-7700.2005.12.021.
    Zhu, Y.H., Luo, P.P., Su, F., Zhang, S., Sun, B., 2020. Spatiotemporal analysis of hydrological variations and their impacts on vegetation in semiarid areas from multiple satellite data. Rem. Sens. 12(24), 4177. https://doi.org/10.3390/rs12244177.
    Zuo, Q.C., Li, L., Liu, X.B., Zhou, X.Y., 2016. Study on hysteresis of precipitation and shallow groundwater recharge. Ground Water 38(3), 7-9 (in Chinese).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (198) PDF downloads(1) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint