Citation: | Maedeh Keihanpour, Abdorreza Kabiri-Samani. 2021: Effects of modern marguerite-shaped inlets on hydraulic characteristics of swirling flow in shaft spillways. Water Science and Engineering, 14(3): 246-256. doi: 10.1016/j.wse.2021.08.005 |
Ackers, J.C., Bennett, F.C.J., Scott, T.A., Karunaratne, G., 2014. Raising the bell mouth spillway at Black Esk Reservoir using piano key weir. In:Erpicum, S., Laugier, F., Pfister, M., Pirotton, M., Cicero, G.-M., Schleiss, A.J., Eds., Labyrinth and Piano Key Weirs Ⅱ. CRC Press, Liege, pp. 235-242.
|
Alfatlawi, T.J.M., Al Shakli, H.I., 2015. Prediction the coefficient of discharge for stepped morning glory spillway using ANN and MNLR approaches. Int. J. Civ. Environ. Eng. 37(2), 1428-1433.
|
Andersen, A., Bohr, T., Stenum, B., Rasmussen, J.J., Lautrup, B., 2006. The bathtub vortex in a rotating container. J. Fluid Mech. 556, 121-146. https://doi.org/10.1017/S0022112006009463.
|
Anwar, H.O., Waller, J.A., Amphlet, M.B., 1978. Similarity of free-vortex at horizontal intake. J. Hydraul. Res. 16(2), 95-106. https://doi.org/10.1080/00221687809499623.
|
Blanckaert, K., Lemmin, U., 2006. Means of noise reduction in acoustic turbulence measurements. J. Hydraul. Res. 44(1), 4-17. https://doi.org/10.1080/00221686.2006.9521657.
|
Borghei, S.M., Kabiri-Samani, A.R., 2010. Effect of anti-vortex plates on critical submergence at a vertical intake. Sientia Iranica 17(2), 89-95.
|
Christodoulou, A., Mavrommatis, A., Papathanassiadis, T., 2010. Experimental study on the effect of piers and boundary proximity on the discharge capacity of a morning glory spillway. In: Proceedings of the First IAHR European Congress. Edinburgh.
|
Cicero, G.M., Barcouda, M., Luck, M., Vettori, E., 2011. Study of piano-key morning glory to increase the spillway capacity of the Bage Dam. In:Labyrinth and Piano Key Weirs. CRC Press, Liege, pp. 81-86. https://doi.org/10.1201/b12349-13.
|
Daggett, L.L., Keulegan, G.H., 1974. Similitude in free-surface vortex formations. J. Hydraul. Div. 100(11), 1565-1581. https://doi.org/10.1061/JYCEAJ.0004105.
|
Echavez, G., McCann, E., 2002. An experimental study on the free-surface vertical vortex. Exp. Fluid 33(3), 414-421. https://doi.org/10.1007/s00348-002-0463-2.
|
Hasanzadeh Vayghan, V., Mohammadi, M., Ranjbar, A., 2019. Experimental investigation of hydraulic parameters in modern horseshoe spillway. Civ. Eng. J. 5(4), 871-880. https://doi.org/10.28991/cej-2019-03091295.
|
Jain, A.K., Garde, R.J., Ranga Raju, K.G., 1978. Vortex formation in vertical pipe intakes. J. Hydraul. Div. 104(10), 1429-1448. https://doi.org/10.1061/JYCEAJ.0005087.
|
Kabiri-Samani, A.R., Borghei, S.M., 2013. Effects of anti-vortex plates on air entrainment by free vortex. Sci. Iran. 20(2), 251-258. https://doi.org/10.1016/j.scient.2012.10.041.
|
Kabiri-Samani, A.R., Keihanpour, M., 2020. Hydraulic characteristics of swirling flow at shaft spillways with the marguerite-shaped inlets. J. Hydraul. Res. https://doi.org/10.1080/00221686.2020.1818313.
|
Khanarmuei, M., Rahimzadeh, H., Sarkardeh, H., 2019. Effect of dual intake direction on critical submergence and vortex strength. J. Hydraul. Res. 57(2), 272-279. https://doi.org/10.1080/00221686.2018.1459896.
|
Khatsuria, R.M., 2005. Hydraulics of Spillways and Energy Dissipators. CRC Press, New York.
|
Loisel, P.E., Duval, F., Chanourdie, S., 2014. Hydraulic scale model of the daisy-shape spillway on the Causse Corrézien Dam. In: Erpicum, S., Laugier, F., Pfister, M., Pirotton, M., Cicero, G.-M., Schleiss, A.J., Eds., Labyrinth and Piano Key Weirs Ⅱ. CRC Press, Liege, pp. 177-184.
|
Monshizadeh, M., Tahershamsi, A., Rahimzadeh, H., Sarkardeh, H., 2017. Comparison between hydraulic and structural based anti-vortex methods at intakes. Eur. Phys. J. Plus 132, 329. https://doi.org/10.1140/epjp/i2017-11608-4.
|
Novak, P., Cabelka, J., 1981. Models in Hydraulic Engineering, Physical Principles and Design Applications. Pitman Publication, London.
|
Odgaard, A.J., 1986. Free-surface air core vortex. J. Hydraul. Eng. 112(7), 610-620. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:7(610).
|
Padmanabhan, M., Hecker, G.E., 1984. Scale effects in pump sump models. J. Hydraul. Eng. 110(11), 1540-1556. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1540).
|
Sarkardeh, H., Zarrati, A.R., Roshan, R., 2010. Effect of intake head wall and trash rack on vortices. J. Hydraul. Res. 48(1), 108-112. https://doi.org/10.1080/00221680903565952.
|
Schleiss, A.J., 2011. From labyrinth to piano key weirs: A historical review. In: Proceedings of the International Conference on Labyrinth and Piano Key Weirs (PKW 2011). Taylor & Francis Group, London, pp. 3-15.
|
Shemshi, R., Kabiri-Samani, A.R., 2017. Swirling flow at vertical shaft spillways with circular piano-key inlets. J. Hydraul. Res. 55(2), 248-258. https://doi.org/10.1080/00221686.2016.1238015.
|
Taştan, K., Yildirim, N., 2010. Effects of dimensionless parameters on airentraining vortices. J. Hydraul. Res. 48(1), 57-64. https://doi.org/10.1080/00221680903566018.
|
Taştan, K., Yildirim, N., 2014. Effects of Froude, Reynolds, and Weber numbers on an air-entraining vortex. J. Hydraul. Res. 52(3), 421-425. https://doi.org/10.1080/00221686.2013.879541.
|
U.S. Bureau of Reclamation (USBR), 1987. Design of Small Dams. U.S. Department of the Interior, U.S. Bureau of Reclamation, Washington, D.C.
|
Yang, J., Liu, T., Bottacin-Busolin, A., Lin, C., 2014. Effects of intakeentrance profiles on free-surface vortices. J. Hydraul. Res. 52(4), 523-531. https://doi.org/10.1080/00221686.2014.905504.
|
Yildirim, N., Kocabas, F., 1998. Critical submergence for intakes in still-water reservoir. J. Hydraul. Eng. 124(1), 103-104. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(103).
|
Yildirim, N., Kocabas, F., 2002. Prediction of critical submergence for an intake pipe. J. Hydraul. Res. 40(4), 507-518. https://doi.org/10.1080/00221680209499892.
|