Volume 14 Issue 3
Sep.  2021
Turn off MathJax
Article Contents
Maedeh Keihanpour, Abdorreza Kabiri-Samani. 2021: Effects of modern marguerite-shaped inlets on hydraulic characteristics of swirling flow in shaft spillways. Water Science and Engineering, 14(3): 246-256. doi: 10.1016/j.wse.2021.08.005
Citation: Maedeh Keihanpour, Abdorreza Kabiri-Samani. 2021: Effects of modern marguerite-shaped inlets on hydraulic characteristics of swirling flow in shaft spillways. Water Science and Engineering, 14(3): 246-256. doi: 10.1016/j.wse.2021.08.005

Effects of modern marguerite-shaped inlets on hydraulic characteristics of swirling flow in shaft spillways

doi: 10.1016/j.wse.2021.08.005
  • Received Date: 2021-01-12
  • Accepted Date: 2021-05-22
  • Available Online: 2021-10-11
  • This study used model experiments to investigates hydraulic characteristics of flow at marguerite-shaped inlets with holes at the bottom of their lobes, known as modern marguerite-shaped inlets. This innovation reduces the swirling flow strength and improves the hydraulic performance of simple shaft spillways. Head-discharge relationships, flow circulation, threshold and critical submergence depths, and discharge coefficients are detailed for different flow regimes. The findings suggest that flow discharges through this type of inlet were approximately six, three, and two times greater than flow discharges through a simple shaft spillway, a circular piano key inlet, and a simple marguerite-shaped inlet, respectively. Increasing the outer length and height of inlets also uniformly distributed the flow around shaft spillways. The best hydraulic performance was observed in the inlets with an outer height of 1.25D and an outer length of 3.75D, where D is the diameter of the shaft spillway. Different equations, with high correlations and low errors, were derived to determine the threshold and critical submergence depths and the discharge coefficients for free and orifice flow regimes.

     

  • loading
  • Ackers, J.C., Bennett, F.C.J., Scott, T.A., Karunaratne, G., 2014. Raising the bell mouth spillway at Black Esk Reservoir using piano key weir. In:Erpicum, S., Laugier, F., Pfister, M., Pirotton, M., Cicero, G.-M., Schleiss, A.J., Eds., Labyrinth and Piano Key Weirs Ⅱ. CRC Press, Liege, pp. 235-242.
    Alfatlawi, T.J.M., Al Shakli, H.I., 2015. Prediction the coefficient of discharge for stepped morning glory spillway using ANN and MNLR approaches. Int. J. Civ. Environ. Eng. 37(2), 1428-1433.
    Andersen, A., Bohr, T., Stenum, B., Rasmussen, J.J., Lautrup, B., 2006. The bathtub vortex in a rotating container. J. Fluid Mech. 556, 121-146. https://doi.org/10.1017/S0022112006009463.
    Anwar, H.O., Waller, J.A., Amphlet, M.B., 1978. Similarity of free-vortex at horizontal intake. J. Hydraul. Res. 16(2), 95-106. https://doi.org/10.1080/00221687809499623.
    Blanckaert, K., Lemmin, U., 2006. Means of noise reduction in acoustic turbulence measurements. J. Hydraul. Res. 44(1), 4-17. https://doi.org/10.1080/00221686.2006.9521657.
    Borghei, S.M., Kabiri-Samani, A.R., 2010. Effect of anti-vortex plates on critical submergence at a vertical intake. Sientia Iranica 17(2), 89-95.
    Christodoulou, A., Mavrommatis, A., Papathanassiadis, T., 2010. Experimental study on the effect of piers and boundary proximity on the discharge capacity of a morning glory spillway. In: Proceedings of the First IAHR European Congress. Edinburgh.
    Cicero, G.M., Barcouda, M., Luck, M., Vettori, E., 2011. Study of piano-key morning glory to increase the spillway capacity of the Bage Dam. In:Labyrinth and Piano Key Weirs. CRC Press, Liege, pp. 81-86. https://doi.org/10.1201/b12349-13.
    Daggett, L.L., Keulegan, G.H., 1974. Similitude in free-surface vortex formations. J. Hydraul. Div. 100(11), 1565-1581. https://doi.org/10.1061/JYCEAJ.0004105.
    Echavez, G., McCann, E., 2002. An experimental study on the free-surface vertical vortex. Exp. Fluid 33(3), 414-421. https://doi.org/10.1007/s00348-002-0463-2.
    Hasanzadeh Vayghan, V., Mohammadi, M., Ranjbar, A., 2019. Experimental investigation of hydraulic parameters in modern horseshoe spillway. Civ. Eng. J. 5(4), 871-880. https://doi.org/10.28991/cej-2019-03091295.
    Jain, A.K., Garde, R.J., Ranga Raju, K.G., 1978. Vortex formation in vertical pipe intakes. J. Hydraul. Div. 104(10), 1429-1448. https://doi.org/10.1061/JYCEAJ.0005087.
    Kabiri-Samani, A.R., Borghei, S.M., 2013. Effects of anti-vortex plates on air entrainment by free vortex. Sci. Iran. 20(2), 251-258. https://doi.org/10.1016/j.scient.2012.10.041.
    Kabiri-Samani, A.R., Keihanpour, M., 2020. Hydraulic characteristics of swirling flow at shaft spillways with the marguerite-shaped inlets. J. Hydraul. Res. https://doi.org/10.1080/00221686.2020.1818313.
    Khanarmuei, M., Rahimzadeh, H., Sarkardeh, H., 2019. Effect of dual intake direction on critical submergence and vortex strength. J. Hydraul. Res. 57(2), 272-279. https://doi.org/10.1080/00221686.2018.1459896.
    Khatsuria, R.M., 2005. Hydraulics of Spillways and Energy Dissipators. CRC Press, New York.
    Loisel, P.E., Duval, F., Chanourdie, S., 2014. Hydraulic scale model of the daisy-shape spillway on the Causse Corrézien Dam. In: Erpicum, S., Laugier, F., Pfister, M., Pirotton, M., Cicero, G.-M., Schleiss, A.J., Eds., Labyrinth and Piano Key Weirs Ⅱ. CRC Press, Liege, pp. 177-184.
    Monshizadeh, M., Tahershamsi, A., Rahimzadeh, H., Sarkardeh, H., 2017. Comparison between hydraulic and structural based anti-vortex methods at intakes. Eur. Phys. J. Plus 132, 329. https://doi.org/10.1140/epjp/i2017-11608-4.
    Novak, P., Cabelka, J., 1981. Models in Hydraulic Engineering, Physical Principles and Design Applications. Pitman Publication, London.
    Odgaard, A.J., 1986. Free-surface air core vortex. J. Hydraul. Eng. 112(7), 610-620. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:7(610).
    Padmanabhan, M., Hecker, G.E., 1984. Scale effects in pump sump models. J. Hydraul. Eng. 110(11), 1540-1556. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1540).
    Sarkardeh, H., Zarrati, A.R., Roshan, R., 2010. Effect of intake head wall and trash rack on vortices. J. Hydraul. Res. 48(1), 108-112. https://doi.org/10.1080/00221680903565952.
    Schleiss, A.J., 2011. From labyrinth to piano key weirs: A historical review. In: Proceedings of the International Conference on Labyrinth and Piano Key Weirs (PKW 2011). Taylor & Francis Group, London, pp. 3-15.
    Shemshi, R., Kabiri-Samani, A.R., 2017. Swirling flow at vertical shaft spillways with circular piano-key inlets. J. Hydraul. Res. 55(2), 248-258. https://doi.org/10.1080/00221686.2016.1238015.
    Taştan, K., Yildirim, N., 2010. Effects of dimensionless parameters on airentraining vortices. J. Hydraul. Res. 48(1), 57-64. https://doi.org/10.1080/00221680903566018.
    Taştan, K., Yildirim, N., 2014. Effects of Froude, Reynolds, and Weber numbers on an air-entraining vortex. J. Hydraul. Res. 52(3), 421-425. https://doi.org/10.1080/00221686.2013.879541.
    U.S. Bureau of Reclamation (USBR), 1987. Design of Small Dams. U.S. Department of the Interior, U.S. Bureau of Reclamation, Washington, D.C.
    Yang, J., Liu, T., Bottacin-Busolin, A., Lin, C., 2014. Effects of intakeentrance profiles on free-surface vortices. J. Hydraul. Res. 52(4), 523-531. https://doi.org/10.1080/00221686.2014.905504.
    Yildirim, N., Kocabas, F., 1998. Critical submergence for intakes in still-water reservoir. J. Hydraul. Eng. 124(1), 103-104. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(103).
    Yildirim, N., Kocabas, F., 2002. Prediction of critical submergence for an intake pipe. J. Hydraul. Res. 40(4), 507-518. https://doi.org/10.1080/00221680209499892.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (240) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return