Volume 14 Issue 3
Sep.  2021
Turn off MathJax
Article Contents
Ying Li, Wen Yang, Xi-qiang Zheng, Chi Yao, Yi Wu. 2021: Combining passive sampling with toxicity testing to evaluate potential ecotoxicological effects of pharmaceuticals in wastewater-impacted rivers. Water Science and Engineering, 14(3): 201-209. doi: 10.1016/j.wse.2021.08.009
Citation: Ying Li, Wen Yang, Xi-qiang Zheng, Chi Yao, Yi Wu. 2021: Combining passive sampling with toxicity testing to evaluate potential ecotoxicological effects of pharmaceuticals in wastewater-impacted rivers. Water Science and Engineering, 14(3): 201-209. doi: 10.1016/j.wse.2021.08.009

Combining passive sampling with toxicity testing to evaluate potential ecotoxicological effects of pharmaceuticals in wastewater-impacted rivers

doi: 10.1016/j.wse.2021.08.009

This work was supported by the National Natural Science Foundation of China (Grant No. 51879077) and the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  • Received Date: 2020-12-09
  • Accepted Date: 2021-02-09
  • Available Online: 2021-10-11
  • A passive sampling method was employed for time-integrative monitoring of five pharmaceuticals and one transformation product (TP) in rivers impacted by sewage treatment plants, in parallel with traditional sampling methods. Target pharmaceuticals, other than naproxen, were detected through passive sampling, with average concentrations in the range of 0.2-5.8 ng/L, and through active sampling, with average concentrations in the range of 0.5-21.7 ng/L. Meanwhile, the ecotoxicological effects of pharmaceuticals and TPs were assessed, including the formation of zebrafish embryos and expression of target genes, upon exposure of zebrafish embryos to sulfadiazine (SDZ) and its TP sulfacetamide, as well as two artificial mixed rivers. The exposure results showed negligible impacts of environmental levels of SDZ, while mimic mixture exposure disturbed the development of embryos and led to the alteration of the socs3, TNF-α, and IL-1β genes. The findings of this study indicated that although pharmaceutical concentrations in rivers receiving treated wastewater are low, the potential ecological effects on the aquatic environment require more attentions.


  • loading
  • Ahrens, L., Daneshvar, A., Lau, A.E., Kreuger, J., 2015. Characterization of five passive sampling devices for monitoring of pesticides in water. J. Chromatogr. A 1405, 1-11. https://doi.org/10.1016/j.chroma.2015.05.044.
    Aisha, A.A., Hneine, W., Mokh, S., Devier, M.H., Budzinski, H., Jaber, F., 2017. Monitoring of 45 pesticides in Lebanese surface water using polar organic chemical integrative sampler (POCIS). Ocean Sci. J. 52(3), 455-466. https://doi.org/10.1007/s12601-017-0041-4.
    Al-Qaim, F.F., Abdullah, M.P., Othman, M.R., Latip, J., Zakaria, Z., 2014. Multi-residue analytical methodology-based liquid chromatographytime-of-flight-mass spectrometry for the analysis of pharmaceutical residues in surface water and effluents from sewage treatment plants and hospitals. J. Chromatogr. A 1345, 139-153. https://doi.org/10.1016/j.chroma.2014.04.025.
    Alvarez, D.A., Petty, J.D., Huckins, J.N., Jones-Lepp, T.L., Getting, D.T., Goddard, J.P., Manahan, S.E., 2004. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ. Toxicol. Chem. 23(7), 1640-1648. https://doi.org/10.1897/03-603.
    Alygizakis, N.A., Gago-Ferrero, P., Borova, V.L., Pavlidou, A., Hatzianestis, I., Thomaidis, N.S., 2016. Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater. Sci. Total Environ. 541, 1097-1105. https://doi.org/10.1016/j.scitotenv.2015.09.145.
    Aymerich, I., Acuna, V., Barcelo, D., Garcia, M.J.J., Petrovic, M., Poch, M., Rodriguez-Mozaz, S., Sabater, S., Schiller, D.V., Corominas, L.I., 2016. Attenuation of pharmaceuticals and their transformation products in a wastewater treatment plant and its receiving river ecosystem. Water Res. 100, 126-136. https://doi.org/10.1016/j.watres.2016.04.022.
    Bialk-Bielińska, A., Stolte, S., Aming, J., Uebers, U., Boschen, A., Stepnowski, P., Matzke, M., 2011. Ecotoxicity evaluation of selected sulfonamides. Chemosphere 85(6), 928-933. https://doi.org/10.1016/j.chemosphere.2011.06.058.
    Dai, G.H., Wang, B., Fu, C.C., Dong, R., Huang, J., Deng, S.B., Wang, Y.J., Yu, G., 2016. Pharmaceuticals and personal care products (PPCPs) in urban and suburban rivers of Beijing, China: Occurrence, source apportionment and potential ecological risk. Environ. Sci.: Process. Impact 18(4), 445-455. https://doi.org/10.1039/c6em00018e.
    Ding, H.J., Wu, Y.X., Zhang, W.H., Zhong, J.Y., Lou, Q., 2017. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China. Chemosphere 184, 137-147. https://doi.org/10.1016/j.chemosphere.2017.05.148.
    Fedorova, G., Randak, T., Golovko, O., Kodes, V., Grabicova, K., Grabic, R., 2014. A passive sampling method for detecting analgesics, psycholeptics, antidepressants and illicit drugs in aquatic environments in the Czech Republic. Sci. Total Environ. 487, 681-687. https://doi.org/10.1016/j.scitotenv.2013.12.091.
    Feitosa-Felizzola, J., Chiron, S., 2009. Occurrence and distribution of selected antibiotics in a small Mediterranean stream (Arc River, Southern France). J. Hydrol. 364(1-2), 50-57. https://doi.org/10.1016/j.jhydrol.2008.10.006.
    Fernandez, C., Gonzalez-Doncel, M., Pro, J., Carbonell, G., Tarazona, J.V., 2010. Occurrence of pharmaceutically active compounds in surface waters of the Henares-Jarama-Tajo river system (Madrid, Spain) and a potential risk characterization. Sci. Total Environ. 408(3), 543-551. https://doi.org/10.1016/j.scitotenv.2009.10.009.
    Fonseca, E., Hernandez, F., Ibanez, M., Rico, A., Pitarch, E., Bijlsma, L., 2020. Occurrence and ecological risks of pharmaceuticals in a Mediterranean river in Eastern Spain. Environ. Int. 144, 106004. https://doi.org/10.1016/j.envint.2020.106004.
    He, Z.Q., Ohno, T., Wu, F.C., Olk, D.C., Honeycutt, C.W., Olanya, M., 2008. Capillary electrophoresis and fluorescence excitation-emission matrix spectroscopy for characterization of humic substances. Soil Sci. Soc. Am. J. 72(5), 1248-1255. https://doi.org/10.2136/sssaj2007.0305.
    Homem, V., Santos, L., 2011. Degradation and removal methods of antibiotics from aqueous matrices-A review. J. Environ. Manag. 92(10), 2304-2347. https://doi.org/10.1016/j.jenvman.2011.05.023.
    Hu, Y., Yan, X., Shen, Y., Di, M.X., Wang, J., 2018. Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment. Ecotoxicol. Environ. Saf. 157, 150-158. https://doi.org/10.1016/j.ecoenv.2018.03.083.
    Huang, H., Wu, J., Ye, J., Deng, J., Liang, Y.M., Liu, W., 2018. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China. Front. Environ. Sci. Eng. 12(6), 7. https://doi.org/10.1007/s11783-018-1053-8.
    Huckins, J.N., Petty, J.D., Orazio, C.E., Lebo, J.A., Clark, R.C., Gibson, V.L., Gala, W.R., Echols, K.R., 1999. Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices(SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water. Environ. Sci. Technol. 33(21), 3918-3923. https://doi.org/10.1021/es990440u.
    Im, J.K., Kim, S.H., Noh, H.R., Yu, S.J., 2020. Temporal-spatial variation and environmental risk assessment of pharmaceuticals in tributaries of the Han River watershed, South Korea. Sci. Total Environ. 741, 140486. https://doi.org/10.1016/j.scitotenv.2020.140486.
    Jarque, S., Pina, B., 2014. Deiodinases and thyroid metabolism disruption in teleost fish. Environ. Res. 135, 361-375. https://doi.org/10.1016/j.envres.2014.09.022.
    Jiang, X.S., Zhu, Y.Q., Liu, L.Q., Fan, X.Q., Bao, Y.X., Deng, S.S., Cui, Y.X., Cagnetta, G., Huang, J., Yu, G., 2020. Occurrence and variations of pharmaceuticals and personal-care products in rural water bodies: A case study of the Taige canal (2018-2019). Sci. Total Environ. 762, 143138. https://doi.org/10.1016/j.scitotenv.2020.143138.
    Kosma, C.I., Lambropoulou, D.A., Albanis, T.A., 2014. Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment. Sci. Total Environ. 466, 421-438. https://doi.org/10.1016/j.scitotenv.2013.07.044.
    Lapworth, D.J., Baran, N., Stuart, M.E., Ward, R., 2012. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 163, 287-303. https://doi.org/10.1016/j.envpol.2011.12.034.
    Letzel, M., Metzner, G., Letzel, T., 2009. Exposure assessment of the pharmaceutical diclofenac based on long-term measurements of the aquatic input. Environ. Int. 35(2), 363-368. https://doi.org/10.1016/j.envint.2008.09.002.
    Li, W.H., Shi, Y.L., Gao, L.H., Liu, J.M., Cai, Y.Q., 2012. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 89(11), 1307-1315. https://doi.org/10.1016/j.chemosphere.2012.05.079.
    Li, Y., Yang, C.M., Bao, Y.J., Ma, X.R., Lu, G.H., 2016a. Aquatic passive sampling of perfluorinated chemicals with polar organic chemical integrative sampler and environmental factors affecting sampling rate. Environ. Sci. Pollut. Res. 23(16), 16096-16103. https://doi.org/10.1007/s11356-016-6791-1.
    Li, Z., Sobek, A., Radke, M., 2016b. Fate of pharmaceuticals and their transformation products in four small European rivers receiving treated wastewater. Environ. Sci. Technol. 50(11), 5614-5621. https://doi.org/10.1021/acs.est.5b06327.
    Liang, X.M., Wang, F., Li, K.B., Nie, X.P., Fang, H.S., 2020. Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio):Developmental toxicity, oxidative stress and immunotoxicity. Fish Shellfish Immunol. 96, 262-269. https://doi.org/10.1016/j.fsi.2019.12.008.
    Lin, T., Chen, Y.Q., Chen, W., 2014. Toxic effect of sulfadiazine on the growth of zebrafish embryos in the water body. J. Saf. Environ. 14(3), 324-327. https://doi.org/10.13637/j.issn.1009-6094.2014.03.072.
    Liu, J.Y., Wei, T.Z., Wu, X., Zhong, H.B., Qiu, W.H., Zheng, Y., 2020. Early exposure to environmental levels of sulfamethoxazole triggers immune and inflammatory response of healthy zebrafish larvae. Sci. Total Environ. 703, 134724. https://doi.org/10.1016/j.scitotenv.2019.134724.
    Liu, X.H., Lu, S.Y., Guo, M., Xi, B.D., Wang, W.L., 2018. Antibiotics in the aquatic environments: A review of lakes, China. Sci. Total Environ. 627, 1195-1208. https://doi.org/10.1016/j.scitotenv.2018.01.271.
    Ma, B., Lu, G., Liu, F., Nie, Y., Zhang, Z., 2016. Organic UV filters in the surface water of Nanjing, China: Occurrence, distribution and ecological risk assessment. Bull. Environ. Contam. Toxicol. 96, 530-535. https://doi.org/10.1007/s00128-015-1725-z.
    Martin, J., Camacho-Munoz, D., Santos, J.L., Aparicio, I., Alonso, E., 2012. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal. J. Hazard Mater. 239, 40-47. https://doi.org/10.1016/j.jhazmat.2012.04.068.
    Maskaoui, K., Hibberd, A., Zhou, J.L., 2007. Assessment of the interaction between aquatic aolloids and pharmaceuticals facilitated by cross-flow ultrafiltration. Environ. Sci. Technol. 41(23), 8038-8043. https://doi.org/10.1021/es071507d.
    Mazzella, N., Debenest, T., Delmas, F., 2008. Comparison between the polar organic chemical integrative sampler and the solid-phase extraction for estimating herbicide time-weighted average concentrations during a microcosm experiment. Chemosphere 73(4), 545-550. https://doi.org/10.1016/j.chemosphere.2008.06.009.
    Morin, N., Miège, C., Coquery, M., Randon, J., 2012. Chemical calibration, performance, validation and applications of the polar organic chemical integrative sampler (POCIS) in aquatic environments. TrAC Trends Anal. Chem. (Reference Ed.) 36, 144-175. https://doi.org/10.1016/j.trac.2012.01.007.
    Nantaba, F., Wasswa, J., Kylin, H., Palm, W.U., Bouwman, H., Kummerer, K., 2019. Occurrence, distribution, and ecotoxicological risk assessment of selected pharmaceutical compounds in water from Lake Victoria, Uganda. Chemosphere 239, 124642. https://doi.org/10.1016/j.chemosphere.2019.124642.
    Oberoi, A.S., Jia, Y.Y., Zhang, H.Q., Khanal, S.K., Lu, H., 2019. Insights into fate and removal of antibiotics in engineered biological treatment systems:A critical review. Environ. Sci. Technol. 53(13), 7234-7264. https://doi.org/10.1021/acs.est.9b01131.
    Ortiz de Garcia, S.A., Pinto, G.P., García-Encina, P.A., Irusta-Mata, R., 2014. Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants. Ecotoxicology 23(8), 1517-1533. https://doi.org/10.1007/s10646-014-1293-8.
    Pal, A., Gin, K.Y.H., Lin, A.Y.C., Reinhard, M., 2010. Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Sci. Total Environ. 408(24), 6062-6069. https://doi.org/10.1016/j.scitotenv.2010.09.026.
    Shi, X., Zhou, J.L., Zhao, H., Hou, L., Yang, Y., 2014. Application of passive sampling in assessing the occurrence and risk of antibiotics and endocrine disrupting chemicals in the Yangtze Estuary, China. Chemosphere 111, 344-351. https://doi.org/10.1016/j.chemosphere.2014.03.139.
    Siegenthaler, P.F., Bain, P., Riva, F., Fent, K., 2016. Effects of antiandrogenic progestins, chlormadinone and cyproterone acetate, and the estrogen 17α-ethinylestradiol (EE2), and their mixtures: Transactivation with human and rainbowfish hormone receptors and transcriptional effects in zebrafish(Danio rerio) eleutero-embryos. Aquat. Toxicol. 182, 142-162. https://doi.org/10.1016/j.aquatox.2016.11.001.
    Sui, Q., Huang, J., Deng, S.B., Chen, W.W., Yu, G., 2011. Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in different biological wastewatertreatment processes. Environ. Sci. Technol. 45(8), 3341-3348. https://doi.org/10.1021/es200248d.
    Tang, J., Shi, T.Z., Wu, X.W., Cao, H.Q., Li, X.D., Hua, R.M., Tang, F., Yue, Y.D., 2015. The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment. Chemosphere 122, 154-161. https://doi.org/10.1016/j.chemosphere.2014.11.032.
    Ternes, T., Bonerz, M., Schmidt, T., 2001. Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A 938(1-2), 175-185. https://doi.org/10.1016/S0021-9673(01)01205-5.
    Thiebault, T., Boussafir, M., Le Milbeau, C., 2017. Occurrence and removal efficiency of pharmaceuticals in an urban wastewater treatment plant:Mass balance, fate and consumption assessment. J. Environ. Chem. Eng. 5(3), 2894-2902. https://doi.org/10.1016/j.jece.2017.05.039.
    Togola, A., Budzinski, H., 2007. Analytical development for analysis of pharmaceuticals in water samples by SPE and GCeMS. Anal. Bioanal. Chem. 388(3), 627-635. https://doi.org/10.1007/s00216-007-1251-x.
    Vergauwen, L., Cavallin, J.E., Ankley, G.T., Bars, C., Gabriels, I.J., Michiels, E.D.G., Fitzpatrick, K.R., Periz-Stanacev, J., Randolph, E.C., Robinson, S.L., 2018. Gene transcription ontogeny of hypothalamicpituitary-thyroid axis development in early-life stage fathead minnow and zebrafish. Gen. Comp. Endocrinol. 266, 87-100. https://doi.org/10.1016/j.ygcen.2018.05.001.
    Wang, C.Y., Liang, S.K., Zhang, Y., 2018. The ecological competition and grazing reverse the effects of sulfamethoxazole on plankton: A case study on characterizing community-level effect. Environ. Sci. Pollut. Res. 25(18), 17283-17288. https://doi.org/10.1007/s11356-018-1901-x.
    Wang,L.,Ying,G.G.,Zhao,J.L.,Yang,X.B., Chen,F.,Tao,R.,Liu,S.,Zhou,L.J., 2010.Occurrence andrisk assessmentofacidicpharmaceuticalsintheYellow River, Hai River and Liao River of north China. Sci. Total Environ. 408(16), 3139-3147. https://doi.org/10.1016/j.scitotenv.2010.04.047.
    Wang, N., Noemie, N., Hien, N.N., Huynh, T.T., Silvestre, F., Phuong, N.T., Danyi, S., Widart, J., Douny, C., Scippo, M.L., et al., 2009. Adverse effects of enrofloxacin when associated with environmental stress in tra catfish(Pangasianodon hypophthalmus). Chemosphere 77(11), 1577-1584. https://doi.org/10.1016/j.chemosphere.2009.09.038.
    Wang, Y.H., Liu, J.Z., Du, K., Wu, C., Wu, Y., 2017. Removal of pharmaceuticals and personal care products from wastewater using algae-based technologies: A review. Rev. Environ. Sci. Biotechnol. 16(4), 717-735. https://doi.org/10.1007/s11157-017-9446-x.
    Xie, Z., Lu, G., Liu, J., Yan, Z., Ma, B., Zhang, Z., Chen, W., 2015. Occurrence, bioaccumulation, and trophic magnification of pharmaceutically active compounds in Taihu Lake, China. Chemosphere 138, 140-147. https://doi.org/10.1016/j.chemosphere.2015.05.086.
    Yang, Y., Ok, Y.S., Kim, K.H., Kwon, E.E., Tsang, Y.F., 2017. Occurrences and removal of pharmaceuticals and personal care products(PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 596, 303-320. https://doi.org/10.1016/j.scitotenv.2017.04.102.
    Ying, G.G., He, L.Y., Ying, A.J., Zhang, Q.Q., Liu, Y.S., Zhao, J.L., 2017. China must reduce its antibiotic use. Environ. Sci. Technol. 51(3), 1072-1073. https://doi.org/10.1021/acs.est.6b06424.
    Yoon, Y., Ryu, J., Oh, J., Choi, B.G., Snyder, S.A., 2010. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci. Total Environ. 408(3), 636-643. https://doi.org/10.1016/j.scitotenv.2009.10.049.
    Zabiegala, B., Kot-Wasik, A., Urbanowicz, M., Namiesnik, J., 2010. Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring. Anal. Bioanal. Chem. 396(1), 273-296. https://doi.org/10.1007/s00216-009-3244-4.
    Zha, D.P., Li, Y., Wang, L., Yang, C.M., Lu, G.H., 2017. Occurrence and attenuation of pharmaceuticals and their transformation products in rivers impacted by sewage treatment plants. RSC Adv. 7(65), 40905-40913. https://doi.org/10.1039/c7ra06852b.
    Zhang, K., Zhao, Y.B., Fent, K., 2016. Occurrence and ecotoxicological effects of free, conjugated, and halogenated steroids including 17a-hydroxypregnanolone and pregnanediol in Swiss wastewater and surface water. Environ. Sci. Technol. 51(11), 6498-6506. https://doi.org/10.1021/acs.est.7b01231.
    Zhang, Z.L., Hibberd, A., Zhou, J.L., 2008. Analysis of emerging contaminants in sewage effluent and river water: Comparison between spot and passive sampling. Anal. Chim. Acta 607(1), 37-44. https://doi.org/10.1016/j.aca.2007.11.024.
    Zhao, Y.B., Zhang, K., Fent, K., 2016. Corticosteroid fludrocortisone acetate targets multiple end points in zebrafish (Danio rerio) at low concentrations. Environ. Sci. Technol. 50(18), 10245-10254. https://doi.org/10.1021/acs.est.6b03436.
    Zhu, F., Yao, Z.J., Ji, W.L., Liu, D.Y., Zhang, H., Li, A.M., Huo, Z.L., Zhou, Q., 2020. An efficient resin for solid-phase extraction and determination by UPLC-MS/MS of 44 pharmaceutical personal care products in environmental waters. Front. Environ. Sci. Eng. 14(3), 1-11. https://doi.org/10.1007/s11783-020-1228-y.
    Zhu, F., Wang, S.Q., Liu, Y.J., Wu, M.H., Wang, H.Y., Xu, G., 2021. Antibiotics in the surface water of Shanghai, China: Screening, distribution, and indicator selecting. Environ. Sci. Pollut. Res. 28, 9836-9848. https://doi.org/10.1007/s11356-020-10967-x.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (142) PDF downloads(2) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint