Citation: | Xi LI, Yi-gang WANG, Su-xiang ZHANG. 2009: Numerical simulation of water quality in Yangtze Estuary. Water Science and Engineering, 2(4): 40-51. doi: 10.3882/j.issn.1674-2370.2009.04.004 |
Banks, R. B., and Herrera, F. F. 1977. Effect of wind and rain on surface reaeration. Journal of the Environmental Engineering Division, 103(3), 489-504.
|
Chen, J. Y., and Chen, S. L. 2002. Impacts of the South-to-North Water Transfer Project on ecological environment at the Yangtze River Estuary. Water Resources Protection, 18(3), 9-13. (in Chinese)
|
Cline, J. D., and Richards, F. A. 1969. Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature and pH. Environmental Science and Technology, 3(9), 838-843. [doi: 10.1021/es60032a004]
|
Deng, Z. F., Sui, H. Y., and Wei, H. P. 2003. Zhuyuan outfall project and sewage marine disposal. Resources and Environment in the Yangtze Basin, 12(1), 39-44. (in Chinese)
|
Di Toro, D. M. 1980. Applicability of cellular equilibrium and Monod theory to phytoplankton growth kinetics. Ecological Modelling, 8, 201-218. [doi: 10.1016/0304-3800(80)90038-1]
|
Gu, H. K. 1966. On the maximum value of dissolved oxygen in its vertical distribution in the sea. Oceanologia Et Limnologia Sinica, 8(2), 85-91. (in Chinese)
|
Hamrick, J. M. 1986. Long-term dispersion in unsteady skewed free surface flow. Estuarine, Coastal and Shelf Science, 23(6), 807-845. [doi: 10.1016/0272-7714(86)90075-2]
|
Hamrick, J. M. 1992. A three-dimensional environmental fluid dynamics computer code: Theoretical and computational aspects, Virginia Institute of Marine Science, Special Report 317. Williamsburg: College of William and Mary.
|
Hamrick, J. M., and Wu, T. S. 1997. Computational design and optimization of the EFDC/HEM3D surface water hydrodynamic and eutrophication models. Delich, G., and Wheeler, M. F., eds., Next Generation Environmental Models and Computational Methods, 143-161. Philadelphia: Society for Industrial and Applied Mathematics.
|
Ji, Z. G., Morton, M. R., and Hamrick, J. M. 2001. Wetting and drying simulation of estuarine processes. Estuarine, Coastal and Shelf Science, 53(5), 683-700. [doi: 10.1006/ecss.2001.0818]
|
Jin, K. R., Hamrick, J. H., and Tisdale, T. 2000. Application of three-dimensional hydrodynamic model for Lake Okeechobee. Journal of Hydraulic Engineering, 126(10), 758-771. [doi:10.1061/(ASCE)0733- 9429(2000)126:10(758)]
|
Jin, K. R., Ji, Z. G., and James, R. T. 2007. Three-dimensional water quality and SAV modeling of a large shallow lake. Journal of Great Lakes Research, 33(1), 28-45. [doi:10.3394/0380-1330(2007)33[28: TWQASM]2.0.CO;2]
|
Kuo, A. Y., Shen, J., and Hamrick, J. M. 1996. Effect of acceleration on bottom shear stress in tidal estuaries. Journal of Waterway, Port, Coastal, and Ocean Engineering, 122(2), 75-83. [doi:10.1061/(ASCE)0733- 950X(1996)122:2(75)]
|
Li, B. C., and Shi, H. Y. 2005. Analysis on the present situation of water environment in the Changjiang estuary. Water Resources Protection, 21(1), 39-44. (in Chinese)
|
Li, X., and Wang, Y. G. 2008. 3D hydro-environmental model of dissolved oxygen distribution in Yangtze estuary. Proceedings of 16th APD-IAHR Congress and 3rd Symposium of IARH-ISIS, Volume II: Environmental and Ecological Hydraulics, 680-683. Beijing: Tsinghua University Press.
|
Mellor, G. L., and Yamada, T. 1982. Development of a turbulence closure model for geophysical fluid problems. Review of Geophysics and Space Physics, 20(4), 851-875.
|
Mellor, G. L., and Blumberg, A. F. 1985. Modeling vertical and horizontal diffusivities with the sigma coordinate system. Monthly Weather Review, 113(8), 1379-1383. [doi:10.1175/1520-0493(1985)113< 1379:MVAHDW>2.0.CO;2]
|
Mellor, G. L. 1991. An equation of state for numerical models of oceans and estuaries. Journal of Atmospheric and Oceanic Technology, 8(4), 609-611. [doi:10.1175/1520-0426(1991)008<0609: AEOSFN>2.0.CO;2]
|
Meng, W., Qin, Y. W., Zheng, B. H., Fu, G., Li, Z. C., Lei, K., and Zhang, L. 2004. Analysis of nitrogen, phosphorus nutrients and COD in waters of Yangtze River Estuary. Environmental Science, 25(6), 65-68. (in Chinese)
|
Morel, F. and Hering, J. G. 1983. Principles and Applications of Aquatic Chemistry. New York: John Wiley and Sons.
|
O’Connor, D. J. and Dobbins, W. E. 1958. Mechanism of reaeration in natural streams. Transactions of the American Society of Civil Engineers, 123, 641-684.
|
Rosati, A. K. and Miyakoda, K. 1988. A general circulation model for upper ocean simulation. Journal of Physical Oceanography, 18(11), 1601-1626. [doi:10.1175/1520-0485(1988)018<1601:AGCMFU>2.0. CO;2]
|
Shen, J., Boon, J. D., and Kuo, A. Y. 1999. A modeling study of a tidal intrusion front and its impact on larval dispersion in the James River estuary, Virginia. Estuaries and Coasts, 22(3), 681-692. [doi:10.2307/ 1353055]
|
Shen, J., and Kuo, A. Y. 1999. Numerical investigation of an estuarine front and its associated eddy. Journal of Waterways, Ports, Coastal and Ocean Engineering, 125(3), 127-135. [doi:10.1061/(ASCE)0733-950X (1999)125:3(127)]
|
Shen, Z. L., Liu, Q., and Zhang, S. M. 2003. Distribution, variation and removal patterns of total nitrogen and organic nitrogen in the Changjiang River. Oceanologia et Limnologia Sinica, 34(6), 577-585. (in Chinese)
|
Shen, J. and Haas, L. 2004. Calculating age and residence time in the tidal York River using three-dimensional model experiments. Estuarine, Coastal and Shelf Science, 61(3), 449-461. [doi:10.1016/j.ecss.2004. 06.010]
|
Shen, J., and Lin, J. 2006. Modeling study of the influences of tide and stratification on age of water in the tidal James River. Estuarine, Coastal and Shelf Science, 68(1-2), 101-112. [doi:10.1016/j.ecss. 2006.01.014]
|
Shi, X. Y., Lu, R., Zhang, C. S., and Wang, X. L. 2006. Distribution and main influence factors process of dissolved oxygen in the adjacent area of the Changjiang Estuary in autumn. Periodical of Ocean University of China, 36(2), 287-290. (in Chinese)
|
Tu, J. B., and Wang, B. D. 2004. Biogeochemical studies on nutrient elements in the Changjiang Estuary. Marine Environmental Science, 23(4), 10-13. (in Chinese)
|
Wang, Y. G., and Li, X. 2007. Field observation of COD variation under tidal current in the Yangtze Estuary. Proceedings of the 4th International Conference on Asia and Pacific Coasts, 799-803. Beijing: China Ocean Press.
|
Wezernak, C. T., and Gannon, J. J. 1968. Evaluation of nitrification in streams. Journal of the Sanitary Engineering Division, 94 (SA5), 883-895.
|
Yan, Y. X., Zhang, S. X., and Li, X. 2007. 3D hydro environmental model of COD distribution in Nangang of Yangtze estuary. Journal of Waterway and Harbor, 28(4), 278-281. (in Chinese)
|
Yu, D. S. 2005. Study on Flow and Sediment Based on ADCP and its Application in 3-D Numerical Model in the Yangtze River Estuary. Ph. D. Dissertation. Nanjing: Hohai University. (in Chinese)
|
Zhang, S. X. 2007. 3D hydro environmental model of dissolved oxygen (DO) distribution in Yangtze Estuary. Proceedings of 20th National Conference on Hydrodynamics, 715-721. Beijing: China Ocean Press. (in Chinese)
|
Zhu, J. R., Liu, X. C., Shen, H. T, and Xiao, C. Y. 2003. Observation and analysis on hydrology in the Changjiang Estuary in March of 1996. Journal of East China Normal University (Natural Science), 4, 87-93. (in Chinese)
|