Citation: | Ming-wei MA, Li-liang REN, Song-bai SONG, Jia-li SONG, Shan-hu JIANG. 2013: Goodness-of-fit tests for multi-dimensional copulas: Expanding application to historical drought data. Water Science and Engineering, 6(1): 18-30. doi: 10.3882/j.issn.1674-2370.2013.01.002 |
Berg, D., and Bakken, H. 2005. A Goodness-of-fit Test for Copulae based on the Probability Integral Transform. Oslo: Department of Mathematics, University of Oslo.
|
Berkowitz, J. 2001. Testing density forecasts, with applications to risk management. Journal of Business and Economic Statistics, 19(4), 465-474. [doi: 10.1198/07350010152596718]
|
Breymann, W., Dias, A., and Embrechts, P. 2003. Dependence structures for multivariate high-frequency data in finance. Quantitative Finance, 3(1), 1-14. [doi: 10.1080/713666155]
|
Chowdhary, H., Escobar, L. A., and Singh, V. P. 2011. Identification of suitable copulas for bivariate frequency analysis of flood peak and flood volume data. Hydrology Research, 42(2-3), 193-216. [doi: 10.2166/nh.2011.065]
|
Demarta, S., and McNeil, A. J. 2005. The t copula and related copulas. International Statistical Review, 73(1), 111-129. [doi: 10.1111/j.1751-5823.2005.tb00254.x]
|
Diebold, F. X., Gunther, T. A., and Tay, A. S. 1998. Evaluating density forecasts with applications to financial risk management. International Economic Review, 39(4), 863-883. [doi: 10.2307/2527342]
|
Diebold, F. X., Hahn, J., and Tay, A. S. 1999. Multivariate density forecast and calibration in financial risk management: High-frequency returns on foreign exchange. The Review of Economics and Statistics, 81(4), 661-673. [doi: 10.1162/003465399558526]
|
Dobri?, J., and Schmid, F. 2005. Testing goodness of fit for parametric families of copulas: Application to financial data. Communications in Statistics — Simulation and Computation, 34(4), 1053-1068. [doi: 10.1080/03610910500308685]
|
Dobri?, J., and Schmid, F. 2007. A goodness of fit test for copulas based on Rosenblatt’s transformation. Computational Statistics and Data Analysis, 51(9), 4633-4642. [doi: 10.1016/j.csda.2006.08.012]
|
Evin, G., and Favre, A. C. 2008. A new rainfall model based on the Neyman-Scott process using cubic copulas. Water Resources Research, 44, W03433. [doi: 10.1029/2007WR006054]
|
Fang, H. B., Fang, K. T., and Kotz, S. 2002. The meta-elliptical distributions with given marginals. Journal of Multivariate Analysis, 82(1), 1-16. [doi: 10.1006/jmva.2001.2017]
|
Fermanian, J. D. 2005. Goodness of fit tests for copulas. Journal of Multivariate Analysis, 95(1), 119-152. [doi: 10.1016/j.jmva.2004.07.004]
|
Fisher, N. I., and Switzer, P. 1985. Chi-plots for assessing dependence. Biometrika, 72(2), 253-265.
|
Fisher, N. I., and Switzer, P. 2001. Graphical assessment of dependence: Is a picture worth 100 tests? American Statistician, 55(3), 233-239.
|
Frees, E. W., Carriere, J., and Valdez, E. 1996. Annuity valuation with dependent mortality. The Journal of Risk and Insurance, 63(2), 229-261.
|
Genest, C., and Rivest, L. P. 1993. Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88(423), 1034-1043. [doi:10.1080/01621459.1993. 10476372]
|
Genest, C., Quessy, J. F., and Rémillard, B. 2006. Goodness-of-fit procedures for copula models based on the probability integral transformation. Scandinavian Journal of Statistics, 33(2), 337-366. [doi:10.1111/ j.1467-9469.2006.00470.x]
|
Genest, C., Rémillard, B., and Beaudoin, D. 2009. Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44(2), 199-213. [doi: 10.1016/j.insmatheco.2007.10.005]
|
Grimaldi, S., and Serinaldi, F. 2006. Asymmetric copula in multivariate flood frequency analysis. Advances in Water Resources, 29(8), 1155-1167. [doi: 10.1016/j.advwatres.2005.09.005]
|
Junker, M., and May, A. 2005. Measurement of aggregate risk with copulas. Econometrics Journal, 8(3), 428-454. [doi: 10.1111/j.1368-423X.2005.00173.x]
|
Ma, M. W., and Song, S. B. 2010. Elliptical copulas for drought characteristics analysis of Xi’an gauging station. Journal of China Hydrology, 30(4), 36-42. (in Chinese)
|
Ma, M. W., Song, S. B., Ren, L. L., Jiang, S. H., and Song, J. L. 2012. Multivariate drought characteristics using trivariate Gaussian and Student t copulas. Hydrological Processes, published online at http://onlinelibrary.wiley.com/doi/10.1002/hyp.8432/abstract on April 17, 2012 [doi: 10.1002/hyp.8432]
|
Malevergne, Y., and Sornette, D. 2003. Testing the Gaussian copula hypothesis for financial asset dependences. Quantitative Finance, 3(4), 231-250. [doi: 10.1088/1469-7688/3/4/301]
|
Mendes, B. V. M., and Souza, R. M. 2004. Measuring financial risks with copulas. International Review of Financial Analysis, 13(1), 27-45. [doi: 10.1016/j.irfa.2004.01.007]
|
Nadarajah, S. 2006. Fisher information for the elliptically symmetric Pearson distributions. Applied Mathematics and Computation, 178(2), 195-206. [doi: 10.1016/j.amc.2005.11.037]
|
Nelsen, R. B. 1999. An Introduction to Copulas. New York: Springer.
|
Panchenko, V. 2005. Goodness-of-fit test for copulas. Physica A, 355, 176-182. [doi:10.1016/j.physa. 2005.02.081]
|
Rosenblatt, M. 1952. Remarks on a multivariate transformation. The Annals of Mathematical Statistics, 23(3), 470-472.
|
Shiau, J. T. 2006. Fitting drought duration and severity with two-dimensional copulas. Water Resources Management, 20(5), 795-815. [doi: 10.1007/s11269-005-9008-9]
|
Sklar, A. 1959. Distribution functions of n dimensions and margins. Publications of the Institute of Statistics of the University of Paris, 8, 229-231. (in French)
|
Song, S. B., and Singh, V. P. 2010. Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stochastic Environmental Research and Risk Assessment, 24(3), 425-444. [doi:10.1007/ s00477-009-0331-1]
|
Wang, X. J., Gebremichael, M., and Yan, J. 2010. Weighted likelihood copula modeling of extreme rainfall events in Connecticut. Journal of Hydrology, 390(1-2), 108-115. [doi: 10.1016/j.jhydrol.2010.06.039]
|
?e?ula, I. 2009. On multivariate Gaussian copulas. Journal of Statistical Planning and Inference, 139(11), 3942-3946. [doi: 10.1016/j.jspi.2009.05.039]
|
Zhang, L., and Singh, V. P. 2007. Trivariate flood frequency analysis using the Gumbel-Hougaard copula. Journal of Hydrologic Engineering, 12(4), 431-439. [doi: 10.1061/(ASCE)1084-0699(2007)12:4(431)]
|
Zhang, Q., Chen, Y. Q., Chen, X. H., and Li, J. F. 2011. Copula-based analysis of hydrological extremes and implications of hydrological behaviors in the Pearl River basin, China. Journal of Hydrologic Engineering, 16(7), 598-607. [doi: 10.1061/(ASCE)HE.1943-5584.0000350]
|
Zhang, Q., Li, J. F., and Singh, V. P. 2012. Application of Archimedean copulas in the analysis of the precipitation extremes: Effects of precipitation changes. Theoretical and Applied Climatology, 107(1-2), 255-264. [doi: 10.1007/s00704-011-0476-y]
|