Citation: | Zhi-li WANG, Yan-fen GENG. 2013: Two-dimensional shallow water equations with porosity and their numerical scheme on unstructured grids. Water Science and Engineering, 6(1): 91-105. doi: 10.3882/j.issn.1674-2370.2013.01.007 |
Alcrudo, F., and Benkhaldoun, F. 2001. Exact solutions to the Riemann problem of the shallow water equations with a bottom step. Computers and Fluids, 30(6), 643-671. [doi:10.1016/S0045-7930 (01)00013-5]
|
Bermudez, A., Dervieux, A., Desideri, J. A., and Vazquez, M. E. 1998. Upwind schemes for the two- dimensional shallow water equations with variable depth using unstructured meshes. Computer Methods in Applied Mechanics and Engineering, 155(1-2), 49-72. [doi: 10.1016/S0045-7825(97)85625-3]
|
Bermudez, A., and Vazquez, M. E. 1994. Upwind methods for hyperbolic conservation laws with source terms. Computers and Fluids, 23(8), 1049-1071. [doi: 10.1016/0045-7930(94)90004-3]
|
Cea, L., French, J. R., and Vazquez-Cendon, M. E. 2006. Numerical modelling of tidal flows in complex estuaries including turbulence: An unstructured finite volume solver and experimental validation. International Journal for Numerical Methods in Engineering, 67(13), 1909-1932. [doi:10.1002/ nme.1702]
|
Ding, L., Pang, Y., Zhao, D. H., Wu, J. Q., and Lu, J. 2004. Analysis of applicability of flux difference splitting scheme on 2D flow-pollutant calculation. Advanced in Water Science, 15(5), 561-565. (in Chinese)
|
Geng, Y. F., Wang, Z. L., and Jin, S. 2005. A high resolution Godunov-type scheme for one dimensional shallow water flow. Journal of Hydrodynamics, Ser. A, 20(4), 507-512 (in Chinese)
|
Harten, A., Lax, P. D., and van Leer, B. 1983. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1), 35-61. [doi: 10.1137/1025002]
|
Heggelund, Y., Vikebo, F., Berntsen, J., and Furnes, G. 2004. Hydrostatic and non-hydrostatic studies of gravitational adjustment over a slope. Continental Shelf Research, 24(18), 2133-2148. [doi: 10.1016/j.csr.2004.07.005]
|
Lee, J. W., Teubner, M. D., Nixon, J. B., and Gill, P. M. 2006. A 3-D non-hydrostatic pressure model for small amplitude free surface flows. International Journal for Numerical Methods in Fluids, 50(6), 649-672. [doi: 10.1002/fld.1054]
|
Li, Z. W. 2008. Study on the dissipative effect of approximate Riemann solver on hypersonic heatflux simulation. Chinese Journal of Theoretical and Applied Mechanics, 40(1), 19-25. (in Chinese)
|
Lu, Y. J., Zhuo, L. Q., Shao, X. J., Wang, H. C., and Li, H. L. 2005. A 2D mathematical model for sediment transport by waves and tidal currents. China Ocean Engineering, 19(4), 571-586.
|
Munson, B. R., Young, D. F., and Okiishi, T. H. 2006. Fundamentals of Fluid Mechanics. 2nd ed. New York: John Wiley & Sons.
|
Nepf, H. M. 1999. Drag, turbulence and diffusion in flow through emergent vegetation. Water Resources Research, 35(2), 479-489. [doi: 10.1029/1998WR900069]
|
Osher, S., and Solomon, F. 1982. Upwind difference schemes for hyperbolic system of conservation laws. Mathematics of Computation, 38(158), 339-374.
|
Roe, P. L. 1981. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2), 357-372. [doi: 10.1016/0021-9991(81)90128-5]
|
Shi, H. D., and Liu, Z. 2005. A finite volume method with unstructured triangular grids for numerical modeling of tidal current. China Ocean Engineering, 19(4), 693-700.
|
Sleigh, P. A., and Gaskell, P. H., Berzins, M., and Wright, N. G. 1998. An unstructured finite-volume algorithm for predicting flow in rivers and estuaries. Computers and Fluids, 27(4), 479-508.
|
Stoker, J. J. 1957. Water Waves: The Mathematical Theory with Applications. New York: Wiley-Interscience.
|
Tan, W. Y. 1998. Computational Hydraulics-Finite Volume Method. Beijing: Tsinghua University Press. (in Chinese)
|
Testa, G., Zuccala, D., Alcrudo, F., Mulet, J., and Soares-Frazao, S. 2007. Flash flood flow experiment in a simplified urban district. Journal of Hydraulic Research, 45(s1), 37-44. [doi:10.1080/00221686. 2007.9521831]
|
van Leer, B. 1979. Towards the ultimate conservative difference scheme, V: A second-order sequel to Godunov’s method. Journal of Computational Physics, 32(1), 101-136. [doi:10.1016/0021-9991 (79)90145-1]
|
Wang, J. S., Ni, H. G., and He, Y. S. 2000. Finite-difference TVD scheme for computation of dam-break problems. Journal of Hydraulic Engineering, 126(4), 253-262. [doi:10.1061/(ASCE)0733-9429 (2000)126:4(253)]
|
Wang, Z. L. 2005. The Unstructured 2D and 3D Shallow Water Model Study Based on Godunov and Semi-Lagrangian Method. Ph. D. dissertation. Dalian: Dalian University of Technology. (in Chinese)
|
Wang, Z. L., Geng, Y. F., and Jin, S. 2005a. An unstructured finite volume algorithm for nonlinear two-dimensional shallow water equation. Journal of Hydrodynamics, Ser. B, 17(3), 306-312.
|
Wang, Z. L., Geng, Y. F., and Jin, S. 2005b. Flux balance method for shallow water equation with source terms. Advanced in Water Science, 16(3), 373-379. (in Chinese).
|
Wang, Z. L., Lu, Y. J., and Geng, Y. F. 2008. One dimensional shallow water equations with porosity and their numerical discretization schemes. Chinese Journal of Theoretical and Applied Mechanics, 40(5), 585-592. (in Chinese).
|
Yuan, H. L., and Wu, C. H. 2004. A two-dimensional vertical non-hydrostatic σ model with an implicit method for free-surface flows. International Journal for Numerical Methods in Fluids, 44(8), 811-835. [doi: 10.1002/fld.670]
|
Zhao, D. H., Shen, H. W., Tabios, III, G. Q., Lai, J. S., and Tan, W. Y. 1994. Finite-volume two-dimensional unsteady-flow model for river basins. Journal of Hydraulic Engineering, 120(7), 863-883. [doi: 10.1061/(ASCE)0733-9429(1994)120:7(863)]
|
Zhou, J. G., Causon, D. M., Mingham, C. G., and Ingram, D. M. 2001. The surface gradient method for the treatment of source terms in the shallow water equation. Journal of Computational Physics, 168(1), 1-25. [doi: 10.1006/jcph.2000.6670]
|
Zoppou, C., and Roberts, S. 2000. Numerical solution of the two-dimensional unsteady dam break. Applied Mathematical Modelling, 24(7), 457-475. [doi: 10.1016/S0307-904X(99)00056-6]
|