2016 Vol. 9, No. 2

Display Method:
Abstract:
The main objective of this study was to evaluate four latest global high-resolution satellite precipitation products (TMPA 3B42RT, CMORPH, TMPA 3B42V7, and CMORPH_adj) against gauge observations of the Yellow River Basin from March 2000 to December 2012. The assessment was conducted with several commonly used statistical indices at daily and monthly scales. Results indicate that 3B42V7 and CMORPH_adj perform better than the near real-time products (3B42RT and CMORPH), particularly the 3B42V7 product. The adjustment by gauge data significantly reduces the systematic biases in the research products. Regarding the near real-time datasets, 3B42RT overestimates rainfall over the whole basin, while CMORPH presents a mixed pattern with negative and positive values of relative bias in low- and high-latitude regions, respectively, and CMORPH performs better than 3B42RT on the whole. According to the spatial distribution of statistical indices, these values are optimized in the southeast and decrease toward the northwest, and the trend is similar for the spatial distribution of the mean annual precipitation during the period from 2000 to 2012. This study also reveals that all the four products can effectively detect rainfall events. This study provides useful information about four mainstream satellite products in the Yellow River Basin, and the findings can facilitate the use of global precipitation measurement (GPM) data in the future.
Abstract:
Realistic hydrological response is sensitive to the spatial variability of landscape properties. For a grid-based distributed rainfall-runoff model with a hypothesis of a uniform grid, the high-frequency information within a grid cell will be gradually lost as the resolution of the digital elevation model (DEM) grows coarser. Therefore, the performance of a hydrological model is usually scale-dependent. This study used the Grid-Xinanjiang (GXAJ) model as an example to investigate the effects of subgrid variability on hydrological response at different scales. With the aim of producing a more reasonable hydrological response and spatial description of the landscape properties, a new distributed rainfall-runoff model integrating the subgrid variability (the GXAJSV model) was developed. In this model, the topographic index is used as an auxiliary variable correlated with the soil storage capacity. The incomplete beta distribution is suggested for simulating the probability distribution of the soil storage capacity within the raster grid. The Yaogu Basin in China was selected for model calibration and validation at different spatial scales. Results demonstrated that the proposed model can effectively eliminate the scale-dependence of the GXAJ model and produce a more reasonable hydrological response.
Abstract:
Earlier investigators have numerically carried out performance analysis of the invert trap fitted in an open channel using the stochastic discrete phase model (DPM) by assuming the open channel flow to be closed conduit flow under pressure and assuming zero shear stress at the top wall. This is known as the fixed lid model. By assuming the top wall to be a shear free wall, they have been able to show that the velocity distribution looks similar to that of an open channel flow with zero velocity at the bottom and maximum velocity at the top, representing the free water surface, but no information has been provided for the pressure at the free water surface. Because of this assumption, the validation of the model in predicting the trap efficiency has performed significantly poorly. In addition, the free water surface subject to zero gauge pressure cannot be modeled using the fixed lid model because there is no provision of extra space in the form of air space for the fluctuating part of the water surface profile. It can, however, be modeled using the volume of fluid (VOF) model because the VOF model is the appropriate model for open channel or free surface flow. Therefore, in the present study, three-dimensional (3D) computational fluid dynamics (CFD) modeling with the VOF model, which considers open channel flow with a free water surface, along with the stochastic DPM, was used to model the trap efficiency of an invert trap fitted in an open rectangular channel. The governing mathematical flow equations of the VOF model were solved using the ANSYS Fluent 14.0 software, reproducing the experimental conditions exactly. The results show that the 3D CFD predictions using the VOF model closely fit the experimental data for glass bead particles.
Abstract:
The layout effects and optimization of runoff storage and filtration facilities are crucial to the efficiency and management of the cost of runoff control, but related research is still lacking. In this study, scenarios with different layouts were simulated using the storm water management model (SWMM), to investigate the layout effects on control efficiency with different precipitations. In a rainfall event with 50 mm of precipitation in two hours, 1820 scenarios with different layouts of four facilities constructed in 16 sub-catchments were simulated, the reduction rates of internal flow presented a standard deviation of 10.9%, and the difference between the maximum and minimum reduction rates reached 59.7%. Based on weighting analysis, an integrated ranking index was obtained and used to determine the optimal layout scenarios considering different rainfall events. In the optimal scenario (storage and filtration facilities constructed in sub-catchments 14, 12, 7, and 2), the reduction rates of the total outflow reached 31.4%, 26.4%, and 14.7%, respectively, with 30, 50, and 80 mm of precipitation. The reduction rate of the internal outflow reached 95% with 50 mm of precipitation and approximately 56% with 80 mm of precipitation.
Abstract:
Non-point source nitrogen loss poses a risk to sustainable aquatic ecosystems. However, non-point sources, as well as impaired river segments with high nitrogen concentrations, are difficult to monitor and regulate because of their diffusive nature, budget constraints, and resource deficiencies. For the purpose of catchment management, the Bayesian maximum entropy approach and spatial regression models have been used to explore the spatiotemporal patterns of non-point source nitrogen loss. In this study, a total of 18 sampling sites were selected along the river network in the Hujiashan Catchment. Over the time period of 2008 to 2012, water samples were collected 116 times at each site and analyzed for non-point source nitrogen loss. The morphometric variables and soil drainage of different land cover types were studied and considered potential factors affecting nitrogen loss. The results revealed that, compared with the approach using the Euclidean distance, the Bayesian maximum entropy approach using the river distance led to an appreciable 10.1% reduction in the estimation error, and more than 53.3% and 44.7% of the river network in the dry and wet seasons, respectively, had a probability of non-point source nitrogen impairment. The proportion of the impaired river segments exhibited an overall decreasing trend in the study catchment from 2008 to 2012, and the reduction in the wet seasons was greater than that in the dry seasons. High nitrogen concentrations were primarily found in the downstream reaches and river segments close to the residential lands. Croplands and residential lands were the dominant factors affecting non-point source nitrogen loss, and explained up to 70.7% of total nitrogen in the dry seasons and 54.7% in the wet seasons. A thorough understanding of the location of impaired river segments and the dominant factors affecting total nitrogen concentration would have considerable importance for catchment management.
Abstract:
The objective of this study was to investigate the spatial relationship between the most likely distribution of saturated hydraulic conductivity ( ) and the observed pressure head (P) distribution within a hillslope. The cross-correlation analysis method was used to investigate the effects of the variance of  , spatial structure anisotropy of  , and normalized vertical infiltration flux (q) on P at some selected locations within the hillslope. The cross-correlation analysis shows that, in the unsaturated region with a uniform flux boundary, the dominant correlation between P and   is negative and mainly occurs around the observation location of P. A relatively high P value is located in a relatively low   zone, while a relatively low P value is located in a relatively high   zone. Generally speaking, P is positively correlated with   at the same location in the unsaturated region. In the saturated region, the spatial distribution of   can significantly affect the position and shape of the phreatic surface. We therefore conclude that heterogeneity can cause some parts of the hillslope to be sensitive to external hydraulic stimuli (e.g., rainfall and reservoir level change), and other parts of the hillslope to be insensitive. This is crucial to explaining why slopes with similar geometries would show different responses to the same hydraulic stimuli, which is significant to hillslope stability analysis.
Abstract:
With consideration of the comprehensive effects of runoff from the Yangtze River, East China Sea background circulation, and tidal currents, a regional circulation model, including the Yangtze Estuary, Hangzhou Bay, and adjacent sea areas was established. The 2002/2003 El Niño event was chosen for study of the anomalies of circulation outside the Yangtze Estuary. The coastal and ocean current systems of the East China Sea and the current structure outside the Yangtze Estuary were accurately described. The results of vertical circulation analysis basically coincide with those of horizontal circulation analysis, showing that the circulation outside the Yangtze Estuary is mainly affected by the Taiwan warm current, runoff from the Yangtze Estuary, and the tide-induced residual current. The El Niño event weakens Yangtze Estuary circulation to a certain degree, and the impacts are more significant in summer than in winter. During the 2002/2003 El Niño event, the flux of the Taiwan warm current decreases, and the northward component of the Taiwan warm current decreases by half in February 2003 compared to the previous year. However, its path is relatively stable.
Abstract:
In coastal areas with complicated flow movement, deposition and scour readily occur in submarine excavation projects. In this study, a small-scale model, with a high resolution in the vertical direction, was used to simulate the tidal current around a submarine excavation project. The finite volume method was used to solve Navier-Stokes equations and the Reynolds stress transport equation, and the entire process of the tidal current was simulated, with unstructured meshes generated in the irregular shape area, and structured meshes generated in other water areas. The meshes near the bottom and free surface were densified with a minimum layer thickness of 0.05 m. The volume of fluid method was used to track the free surface, the volume fraction of cells on the upstream boundary was obtained from the volume fraction of adjacent cells, and that on the downstream boundary was determined by the water level process. The numerical results agree with the observed data, and some conclusions can be drawn: after the foundation trench excavation, the flow velocity decreases quite a bit through the foundation trench, with reverse flow occurring on the lee slope in the foundation trench; the swirling flow impedes inflow, leading to the occurrence of dammed water above the foundation trench; the turbulent motion is stronger during ebbing than in other tidal stages, the range with the maximum value of turbulent viscosity, occurring on the south side of the foundation trench at maximum ebbing, is greater than those in other tidal stages in a tidal cycle, and the maximum value of Reynolds shear stress occurs on the south side of the foundation trench at maximum ebbing in a tidal cycle. The numerical calculation method shows a strong performance in simulation of the hydrodynamic characteristics of tidal currents in the foundation trench, providing a basis for submarine engineering construction in coastal areas.
Abstract:
The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was conducted on a laboratory-scale model. It was discovered that the critical hydraulic gradient and the area of the piping tunnel increase when the overlying clay thickens. With a thicker clay layer, erosion of the sandy gravel below the clay layer occurs later, but, once the erosion starts, the erosion rate is very high and the average velocity of water seeping through the cross-section of the sandy gravel increases rapidly due to the low deformability of the thick clay layer. Furthermore, it was found that the progression of piping is a complicated and iterative process involving erosion of fine particles, clogging of pores, and flushing of the clogged pores. Two types of erosion have been identified in the progression of piping: one causes the tunnel to advance upstream, and the other increases the depth of the tunnel. The results show that the overlying clay is an important factor when evaluating piping in sandy gravel foundations of water-retaining structures.