Volume 9 Issue 2
Apr.  2016
Turn off MathJax
Article Contents
Shuang Wang, Jian-sheng Chen, Hai-qing He, Wen-zheng He. 2016: Experimental study on piping in sandy gravel foundations considering effect of overlying clay. Water Science and Engineering, 9(2): 165-171. doi: 10.1016/j.wse.2016.06.001
Citation: Shuang Wang, Jian-sheng Chen, Hai-qing He, Wen-zheng He. 2016: Experimental study on piping in sandy gravel foundations considering effect of overlying clay. Water Science and Engineering, 9(2): 165-171. doi: 10.1016/j.wse.2016.06.001

Experimental study on piping in sandy gravel foundations considering effect of overlying clay

doi: 10.1016/j.wse.2016.06.001
Funds:  This work was supported by the 973 Program of China (Grant No. 2012CB417005) and Postgraduate Research and Innovation Plan Project in Jiangsu Province (Grant No. CXZZ13_0243).
More Information
  • Corresponding author: Shuang Wang
  • Received Date: 2015-04-08
  • Rev Recd Date: 2015-08-10
  • The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was conducted on a laboratory-scale model. It was discovered that the critical hydraulic gradient and the area of the piping tunnel increase when the overlying clay thickens. With a thicker clay layer, erosion of the sandy gravel below the clay layer occurs later, but, once the erosion starts, the erosion rate is very high and the average velocity of water seeping through the cross-section of the sandy gravel increases rapidly due to the low deformability of the thick clay layer. Furthermore, it was found that the progression of piping is a complicated and iterative process involving erosion of fine particles, clogging of pores, and flushing of the clogged pores. Two types of erosion have been identified in the progression of piping: one causes the tunnel to advance upstream, and the other increases the depth of the tunnel. The results show that the overlying clay is an important factor when evaluating piping in sandy gravel foundations of water-retaining structures.

     

  • loading
  • Al-Riffai, M., Nistor, I., 2010. Impact and analysis of geotechnical processes on earthfill dam breaching. Natural Hazards, 55(1), 15–27. http://dx.doi.org/10.1007/s11069-010-9586-6.
    Bendahmane, F., Marot, D., Alexis, A., 2008. Experimental parametric study of suffusion and backward erosion. Journal of Geotechnical and Geoenvironmental Engineering, 134(1), 57–67. http://dx.doi.org/10.1061/(ASCE)1090-0241(2008)134:1(57).
    Boucher, S. G. 1990. Field Tunnel Erosion, Its Characteristics and Amelioration. Monash University, Clayton.
    Chang, D.S., Zhang, L. M. 2013. Critical hydraulic gradients of internal erosion under complex stress states. Journal of Geotechnical and Geoenvironmental Engineering, 139(9), 1454–1467. http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000871.
    Fannin, R. J., Moffat, R., 2006. Observations on internal stability of cohensionless soils. Geotechnique, 56(7), 497–500. http://dx.doi.org/10.1680/geot.2006.56.7.497.
    Fell, R., Wan, C. F., Cyganiewicz, J., Foster, M., 2003. Time for development of internal erosion and piping in embankment dams. Journal of Geotechnical and Geoenvironmental Engineering, 129(4), 307–314. http://dx.doi.org/10.1061/(ASCE)1090-0241(2003)129:4(307).
    Foster, M., Fell, R., Spannagle, M., 2000a. The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5), 1000–1024. http://dx.doi.org/10.1139/cgj-37-5-1000.
    Foster, M., Fell, R., Spannagle, M., 2000b. A method for assessing the relative likelihood of failure of embankment dams by piping. Canadian Geotechnical Journal, 37(5), 1025–1061. http://dx.doi.org/10.1139/cgj-37-5-1025.
    Indraratna, B., Nguyen, V. T., Rujikiatkamjorn, C., 2011. Assessing the potential of internal erosion and suffusion of granular soils. Journal of Geotechnical and Geoenvironmental Engineering, 137(5), 550–554. http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000447.
    Li, M.X., 2008. Seepage Induced Instability in Widely Graded Soils. Ph. D. Dissertation. University of British Colombia, Vancouver.
    Luo, Y. L., Qiao, L., Liu, X. X., Zhan, M. L., Sheng, J. C., 2013. Hydro-mechanical experiments on suffusion under long-term large hydraulic heads. Natural Hazards, 65(3), 1361–1377. http://dx.doi.org/10.1007/s11069-012-0415-y.
    Maknoon, M., Mahdi, T. F., 2010. Experimental investigation into embankment external suffusion. Natural Hazards, 54(3), 749–763. http://dx.doi.org/10.1007/s11069-010-9501-1.
    Marot, D., Bendahmane, F., Rosquoet, F., Alexis, A., 2009. Internal flow effects on isotropic confined sand-clay mixtures. Soil and Sediment Contamination, 18(3), 294–306. http://dx.doi.org/10.1080/15320380902799524.
    Marot, D., Le, V. D., Garnier, J., Thorel, L., Audrain, P., 2012. Study of scale effect in an internal erosion mechanism: Centrifuge model and energy analysis. European Journal of Environmental and Civil Engineering, 16(1), 1–19. http://dx.doi.org/10.1080/19648189.2012.667203.
    Marot, D., Sail, Y., Alexis, A., 2010. Experimental bench for study of internal erosion in cohesionless soils. In: Burns, S.E., Bhatia, S.K., Avila, C.M.C., Hunt, B.E. (eds), Proceedings of the Fifth International Conference on Scour and Erosion (ICSE-5), 418–427. ASCE, San Francisco.
    Moffat, R., Fannin, R. J., 2011. A hydromechanical relation governing internal stability of cohesionless soil. Canadian Geotechnical Journal, 48(3), 413–424. http://dx.doi.org/10.1139/T10-070.
    Moffat, R., Fannin, R. J., Garner, S. J. 2011. Spatial and temporal progression of internal erosion in cohesionless soil. Canadian Geotechnical Journal, 48(3), 399–412. http://dx.doi.org/10.1139/T10-071.
    Richards, K. S., and Reddy, K. R. 2008. Experimental investigation of piping potential in earthen structures. Geosustainability and Geohazard Mitigation, Proceedings of GeoCongress, 178, 367–376. http://dx.doi.org/ 10.1061/40971(310)46.
    Richards, K. S., Reddy, K. R., 2010. True triaxial piping test apparatus for evaluation of piping potential in earth structures. Geotechnical Testing Journal, 33(1), 83–95. http://dx.doi.org/10.1520/GTJ102246.
    Sail, Y., Marot, D., Sibille, L., Alexis, A., 2011. Suffusion tests on cohesionless granular matter: Experimental study. European Journal of Environmental and Civil Engineering, 15(5), 799–817. http://dx.doi.org/10.1080/19648189.2011.9693366.
    Skempton, A. W., Brogan, J. M., 1994. Experiments on piping in sandy gravels. Geotechnique, 44(3), 449–460. http://dx.doi.org/10.1680/geot.1994.44.3.449.
    Wan, C. F., Fell, R., 2008. Assessing the potential of internal instability and suffusion in embankment dams and their foundations. Journal of Geotechnical and Geoenvironmental Engineering, 134(3), 401–407. http://dx.doi.org/10.1061/(ASCE)1090-0241(2008)134:3(401).
    Zhang, J., Guo, Z. X., Cao, S. Y., Yang, F. G., 2012. Experimental study on scour and erosion of blocked dam. Water Science and Engineering, 5(2), 219–229. http://dx.doi.org/10.3882/j.issn.1674-2370.2012.02.010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1279) PDF downloads(2131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return