Shuang Wang, Jian-sheng Chen, Hai-qing He, Wen-zheng He. 2016: Experimental study on piping in sandy gravel foundations considering effect of overlying clay. Water Science and Engineering, 9(2): 165-171. doi: 10.1016/j.wse.2016.06.001
Citation: Shuang Wang, Jian-sheng Chen, Hai-qing He, Wen-zheng He. 2016: Experimental study on piping in sandy gravel foundations considering effect of overlying clay. Water Science and Engineering, 9(2): 165-171. doi: 10.1016/j.wse.2016.06.001

Experimental study on piping in sandy gravel foundations considering effect of overlying clay

doi: 10.1016/j.wse.2016.06.001
Funds:  This work was supported by the 973 Program of China (Grant No. 2012CB417005) and Postgraduate Research and Innovation Plan Project in Jiangsu Province (Grant No. CXZZ13_0243).
More Information
  • Corresponding author: Shuang Wang
  • Received Date: 2015-04-08
  • Rev Recd Date: 2015-08-10
  • The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was conducted on a laboratory-scale model. It was discovered that the critical hydraulic gradient and the area of the piping tunnel increase when the overlying clay thickens. With a thicker clay layer, erosion of the sandy gravel below the clay layer occurs later, but, once the erosion starts, the erosion rate is very high and the average velocity of water seeping through the cross-section of the sandy gravel increases rapidly due to the low deformability of the thick clay layer. Furthermore, it was found that the progression of piping is a complicated and iterative process involving erosion of fine particles, clogging of pores, and flushing of the clogged pores. Two types of erosion have been identified in the progression of piping: one causes the tunnel to advance upstream, and the other increases the depth of the tunnel. The results show that the overlying clay is an important factor when evaluating piping in sandy gravel foundations of water-retaining structures.

     

  • Al-Riffai, M., Nistor, I., 2010. Impact and analysis of geotechnical processes on earthfill dam breaching. Natural Hazards, 55(1), 15–27. http://dx.doi.org/10.1007/s11069-010-9586-6.
    Bendahmane, F., Marot, D., Alexis, A., 2008. Experimental parametric study of suffusion and backward erosion. Journal of Geotechnical and Geoenvironmental Engineering, 134(1), 57–67. http://dx.doi.org/10.1061/(ASCE)1090-0241(2008)134:1(57).
    Boucher, S. G. 1990. Field Tunnel Erosion, Its Characteristics and Amelioration. Monash University, Clayton.
    Chang, D.S., Zhang, L. M. 2013. Critical hydraulic gradients of internal erosion under complex stress states. Journal of Geotechnical and Geoenvironmental Engineering, 139(9), 1454–1467. http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000871.
    Fannin, R. J., Moffat, R., 2006. Observations on internal stability of cohensionless soils. Geotechnique, 56(7), 497–500. http://dx.doi.org/10.1680/geot.2006.56.7.497.
    Fell, R., Wan, C. F., Cyganiewicz, J., Foster, M., 2003. Time for development of internal erosion and piping in embankment dams. Journal of Geotechnical and Geoenvironmental Engineering, 129(4), 307–314. http://dx.doi.org/10.1061/(ASCE)1090-0241(2003)129:4(307).
    Foster, M., Fell, R., Spannagle, M., 2000a. The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5), 1000–1024. http://dx.doi.org/10.1139/cgj-37-5-1000.
    Foster, M., Fell, R., Spannagle, M., 2000b. A method for assessing the relative likelihood of failure of embankment dams by piping. Canadian Geotechnical Journal, 37(5), 1025–1061. http://dx.doi.org/10.1139/cgj-37-5-1025.
    Indraratna, B., Nguyen, V. T., Rujikiatkamjorn, C., 2011. Assessing the potential of internal erosion and suffusion of granular soils. Journal of Geotechnical and Geoenvironmental Engineering, 137(5), 550–554. http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000447.
    Li, M.X., 2008. Seepage Induced Instability in Widely Graded Soils. Ph. D. Dissertation. University of British Colombia, Vancouver.
    Luo, Y. L., Qiao, L., Liu, X. X., Zhan, M. L., Sheng, J. C., 2013. Hydro-mechanical experiments on suffusion under long-term large hydraulic heads. Natural Hazards, 65(3), 1361–1377. http://dx.doi.org/10.1007/s11069-012-0415-y.
    Maknoon, M., Mahdi, T. F., 2010. Experimental investigation into embankment external suffusion. Natural Hazards, 54(3), 749–763. http://dx.doi.org/10.1007/s11069-010-9501-1.
    Marot, D., Bendahmane, F., Rosquoet, F., Alexis, A., 2009. Internal flow effects on isotropic confined sand-clay mixtures. Soil and Sediment Contamination, 18(3), 294–306. http://dx.doi.org/10.1080/15320380902799524.
    Marot, D., Le, V. D., Garnier, J., Thorel, L., Audrain, P., 2012. Study of scale effect in an internal erosion mechanism: Centrifuge model and energy analysis. European Journal of Environmental and Civil Engineering, 16(1), 1–19. http://dx.doi.org/10.1080/19648189.2012.667203.
    Marot, D., Sail, Y., Alexis, A., 2010. Experimental bench for study of internal erosion in cohesionless soils. In: Burns, S.E., Bhatia, S.K., Avila, C.M.C., Hunt, B.E. (eds), Proceedings of the Fifth International Conference on Scour and Erosion (ICSE-5), 418–427. ASCE, San Francisco.
    Moffat, R., Fannin, R. J., 2011. A hydromechanical relation governing internal stability of cohesionless soil. Canadian Geotechnical Journal, 48(3), 413–424. http://dx.doi.org/10.1139/T10-070.
    Moffat, R., Fannin, R. J., Garner, S. J. 2011. Spatial and temporal progression of internal erosion in cohesionless soil. Canadian Geotechnical Journal, 48(3), 399–412. http://dx.doi.org/10.1139/T10-071.
    Richards, K. S., and Reddy, K. R. 2008. Experimental investigation of piping potential in earthen structures. Geosustainability and Geohazard Mitigation, Proceedings of GeoCongress, 178, 367–376. http://dx.doi.org/ 10.1061/40971(310)46.
    Richards, K. S., Reddy, K. R., 2010. True triaxial piping test apparatus for evaluation of piping potential in earth structures. Geotechnical Testing Journal, 33(1), 83–95. http://dx.doi.org/10.1520/GTJ102246.
    Sail, Y., Marot, D., Sibille, L., Alexis, A., 2011. Suffusion tests on cohesionless granular matter: Experimental study. European Journal of Environmental and Civil Engineering, 15(5), 799–817. http://dx.doi.org/10.1080/19648189.2011.9693366.
    Skempton, A. W., Brogan, J. M., 1994. Experiments on piping in sandy gravels. Geotechnique, 44(3), 449–460. http://dx.doi.org/10.1680/geot.1994.44.3.449.
    Wan, C. F., Fell, R., 2008. Assessing the potential of internal instability and suffusion in embankment dams and their foundations. Journal of Geotechnical and Geoenvironmental Engineering, 134(3), 401–407. http://dx.doi.org/10.1061/(ASCE)1090-0241(2008)134:3(401).
    Zhang, J., Guo, Z. X., Cao, S. Y., Yang, F. G., 2012. Experimental study on scour and erosion of blocked dam. Water Science and Engineering, 5(2), 219–229. http://dx.doi.org/10.3882/j.issn.1674-2370.2012.02.010.
  • Relative Articles

    Zhengang Wang. 2024: Numerical three-dimensional modeling of earthen dam piping failure. Water Science and Engineering, 17(1): 72-82. doi: 10.1016/j.wse.2023.09.008
    Rui-hua Nie, Qi-hang Zhou, Wen-jie Li, Xing-nian Liu, Gang Xie, Lu Wang. 2023: Impact of backwater on water surface profile in curved channels. Water Science and Engineering, 16(3): 295-301. doi: 10.1016/j.wse.2023.04.006
    Xi-chen Wang, Jian Zhang, Zong-fu Fu, Hui Xu, Ting-yu Xu, Chen-lu Zhou. 2020: Influence of flow rate and baffle spacing on hydraulic characteristics of a novel baffle dropshaft  . Water Science and Engineering, 13(3): 233-242. doi: 10.1016/j.wse.2020.09.001
    Sheng-shui Chen, Qi-ming Zhong, Guang-ze Shen. 2019: Numerical modeling of earthen dam breach due to piping failure. Water Science and Engineering, 12(3): 169-178. doi: 10.1016/j.wse.2019.08.001
    Bing-qing Lu, Yong Zhang, Hong-guang Sun, Chun-miao Zheng. 2018: Lagrangian simulation of multi-step and rate-limited chemical reactions in multi-dimensional porous media. Water Science and Engineering, 11(2): 101-113. doi: 10.1016/j.wse.2018.07.006
    Si-hong Liu, Liu-jiang Wang, Zi-jian Wang, Erich Bauer. 2016: Numerical stress-deformation analysis of a cut-off wall in clay-core rockfill dam on thick overburden. Water Science and Engineering, 9(3): 219-226. doi: 10.1016/j.wse.2016.11.002
    Azadeh Gholami, Hossein Bonakdari, Ali Akbar Akhtari. 2016: Assessment of water depth change patterns in 120° sharp bend using numerical model. Water Science and Engineering, 9(4): 336-344. doi: 10.1016/j.wse.2017.01.004
    Ying-hua LI, Hai-bo LI, Xin-yang XU, Xuan GONG, Yong-chun ZHOU. 2015: Application of subsurface wastewater infiltration system to on-site treatment of domestic sewage under high hydraulic loading rate. Water Science and Engineering, 8(1): 49-54. doi: 10.1016/j.wse.2015.01.008
    Jun HE, Yu WANG, Yong LI, Xiao-chen RUAN. 2015: Effects of leachate infiltration and desiccation cracks on hydraulic conductivity of compacted clay. Water Science and Engineering, 8(2): 151-157. doi: 10.1016/j.wse.2015.04.004
    Xiao-xie LIU, Yee-Meng CHIEW. 2014: Effect of upward seepage on bedload transport rate. Water Science and Engineering, 7(2): 208-217. doi: 10.3882/j.issn.1674-2370.2014.02.008
    Zhi-hong ZHANG, Zhao-gang XU, Xiu-li DU, Hong-yan LI. 2013: Impact of consolidation pressure on contaminant migration in clay liner. Water Science and Engineering, 6(3): 340-353. doi: 10.3882/j.issn.1674-2370.2013.03.010
    Ya-long ZHOU, Zhi-li ZOU, Kai YAN. 2012: Experimental study on modulational instability and evolution of crescent waves. Water Science and Engineering, 5(4): 419-427. doi: 10.3882/j.issn.1674-2370.2012.04.006
    Shuai-jie GUO, Fu-hai ZHANG, Bao-tian WANG, Chao ZHANG. 2012: Settlement prediction model of slurry suspension based on sedimentation rate attenuation. Water Science and Engineering, 5(1): 79-92. doi: 10.3882/j.issn.1674-2370.2012.01.008
    Jing ZHANG, Zhi-xue GUO, Shu-you CAO, Feng-guang YANG. 2012: Experimental study on scour and erosion of blocked dam. Water Science and Engineering, 5(2): 219-229. doi: 10.3882/j.issn.1674-2370.2012.02.010
    Lu QU, Ran LI, Jia LI, Ke-feng LI, Lin WANG. 2011: Experimental study on total dissolved gas supersaturation in water. Water Science and Engineering, 4(4): 396-404. doi: 10.3882/j.issn.1674-2370.2011.04.004
    Ji-Sung KIM, Chan-Joo LEE, Won KIM, Yong-Jeon KIM. 2010: Roughness coefficient and its uncertainty in a gravel-bed river. Water Science and Engineering, 3(2): 217-232. doi: 10.3882/j.issn.1674-2370.2010.02.010
    Tao WANG, Wei-min BAO, Hai-li XU, Zhen ZHU, Si-min QU, Peng SHI, Hai-ying HU, Rui-qi FAN, Qian LI. 2010: Experimental study on the relationship between average isotopic fractionation factor and evaporation rate. Water Science and Engineering, 3(4): 394-404. doi: 10.3882/j.issn.1674-2370.2010.04.003
    Kazumi ISHIKAWA, Yukio KONO, Akira HAGA, Kazuo KATO, Kota SUGAWARA. 2009: Experimental study on dynamic pipe fracture in consideration of hydropower plant model. Water Science and Engineering, 2(4): 60-68. doi: 10.3882/j.issn.1674-2370.2009.04.006
    Su-juan ZHENG, Xiu-ming YU, Li-qing CAO. 2009: Application of k-person and k-task maximal efficiency assignment algorithm to water piping repair. Water Science and Engineering, 2(2): 98-104 . doi: 10.3882/j.issn.1674-2370.2009.02.011
    Fei LENG, Gao LIN. 2008: Application of thermodynamics-based rate-dependent constitutive models of concrete in the seismic analysis of concrete dams. Water Science and Engineering, 1(3): 54-64 . doi: 10.3882/j.issn.1674-2370.2008.03.006
  • Cited by

    Periodical cited type(14)

    1. Guo, H., Ren, J., Zhang, L. et al. Experimental study on backward erosion piping of a double-layer dike foundation under variable exit geometries. Transportation Geotechnics, 2024. doi:10.1016/j.trgeo.2024.101353
    2. Feng, L.-Y., Liu, H.-D., Chen, J.-X. Experimental Study on Piping of Dike Foundation with Suspended Plastic Cutoff Wall Under Vertical Load. International Journal of Civil Engineering, 2024, 22(4): 523-533. doi:10.1007/s40999-023-00909-2
    3. Li, H., Wang, W., Wang, J. et al. Model test study on piping mechanism of binary dike foundation structure | [二元堤基结构堤防管涌机理模型试验]. Advances in Science and Technology of Water Resources, 2024, 44(1): 79-88. doi:10.3880/j.issn.1006-7647.2024.01.012
    4. Devipriya, V.P., Chandrakaran, S., Rangaswamy, K. Seepage behavior of soil mixed with randomly distributed recycled plastic materials. Water Science and Engineering, 2022, 15(3): 257-264. doi:10.1016/j.wse.2022.06.002
    5. Fan, X., Dufresne, A., Whiteley, J. et al. Recent technological and methodological advances for the investigation of landslide dams. Earth-Science Reviews, 2021. doi:10.1016/j.earscirev.2021.103646
    6. Xue, H., Dang, F., Li, Y. et al. Development of Piping Analysis Method for Embankment including Time-Dependent Change in Permeability Coefficient. International Journal of Geomechanics, 2021, 21(6): 04021090. doi:10.1061/(ASCE)GM.1943-5622.0001942
    7. Urzică, A., Mihu-Pintilie, A., Stoleriu, C.C. et al. Using 2D HEC-RAS modeling and embankment dam break scenario for assessing the flood control capacity of a multireservoir system (Ne Romania). Water (Switzerland), 2021, 13(1): 57. doi:10.3390/w13010057
    8. Liu, W., Wan, S., Luo, X. et al. Experimental study of suffusion characteristics within granite residual soil controlling inflow velocity. Arabian Journal of Geosciences, 2020, 13(22): 1191. doi:10.1007/s12517-020-06193-x
    9. Ming, P., Lu, J., Cai, X. et al. Multi-Particle Model of the Critical Hydraulic Gradient for Dike Piping. Soil Mechanics and Foundation Engineering, 2020, 57(3): 200-210. doi:10.1007/s11204-020-09656-1
    10. Alsaydalani, M.O.A.. Internal erosion and fluidisation of granular materials-a review. International Review of Civil Engineering, 2020, 11(4): 164-172. doi:10.15866/irece.v11i4.16646
    11. Liu, W., Wan, S., Huang, F. et al. Experimental study of subsurface erosion in granitic under the conditions of different soil column angles and flow discharges. Bulletin of Engineering Geology and the Environment, 2019, 78(8): 5877-5888. doi:10.1007/s10064-019-01519-w
    12. Wang, T., Liu, S., Feng, Y. et al. Compaction characteristics and minimum void ratio prediction model for gap-graded soil-rock mixture. Applied Sciences (Switzerland), 2018, 8(12): 2584. doi:10.3390/APP8122584
    13. Dale, J., Burgess, H.M., Burnside, N.G. et al. The evolution of embryonic creek systems in a recently inundated large open coast managed realignment site. Anthropocene Coasts, 2018, 1(1): 16-33. doi:10.1139/anc-2017-0005
    14. Wang, Z.-C., Mao, H.-T., Wang, X.-J. et al. Laboratory tests on erosion of overlying sand layer on shallow and strong permeable stratum in dike (dam) foundation | [堤(坝)基中浅层强透水层上覆砂层侵蚀试验与分析]. Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2017. doi:10.11779/CJGE2017S2059

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.9 %FULLTEXT: 23.9 %META: 58.9 %META: 58.9 %PDF: 17.2 %PDF: 17.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.4 %其他: 2.4 %Algeria: 1.0 %Algeria: 1.0 %China: 59.3 %China: 59.3 %Germany: 4.4 %Germany: 4.4 %Indonesia: 1.0 %Indonesia: 1.0 %Reserved: 16.2 %Reserved: 16.2 %United States: 15.8 %United States: 15.8 %其他AlgeriaChinaGermanyIndonesiaReservedUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1305) PDF downloads(2131) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return