2012 Vol. 5, No. 3

Display Method:
Abstract:
 Flooding is a common natural disaster that causes enormous economic, social, and human losses. Of various flood routing methods, the dynamic wave model is one of the best approaches for the prediction of the characteristics of floods during their propagations in natural rivers because all of the terms of the momentum equation are considered in the model. However, no significant research has been conducted on how the model sensitivity affects the accuracy of the downstream hydrograph. In this study, a comprehensive analysis of the input parameters of the dynamic wave model was performed through field applications in natural rivers and routing experiments in artificial channels using the graphical multi-parametric sensitivity analysis (GMPSA). The results indicate that the effects of input parameter errors on the output results are more significant in special situations, such as lower values of Manning’s roughness coefficient and/or a steeper bed slope on the characteristics of a design hydrograph, larger values of the skewness factor and/or time to peak on the channel characteristics, larger values of Manning’s roughness coefficient and/or the bed slope on the space step, and lower values of Manning’s roughness coefficient and/or a steeper bed slope on the time step and weighting factor.
Abstract:
The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (1-D) mathematical model for flood routing in the river network of the Jingjiang River and Dongting Lake using the explicit finite volume method. Based on observed data during the flood periods in 1996 and 1998, the model was calibrated and validated, and the results show that the model is effective and has high accuracy. In addition, the one-dimensional mathematical model for the river network and the horizontal two-dimensional (2-D) mathematical model for the Jingjiang flood diversion area were coupled to simulate the flood process in the Jingjiang River, Dongting Lake, and the Jingjiang flood diversion area. The calculated results of the coupled model are consistent with the practical processes. Meanwhile, the results show that the flood diversion has significant effects on the decrease of the peak water level at the Shashi and Chenjiawan hydrological stations near the flood diversion gates, and the effect is more obvious in the downstream than in the upstream.
Abstract:
The unique regional climate characteristics are among the main reasons for the frequent wind-sand activity in arid and cold areas in the agro-pastoral ecotone in Inner Mongolia, China. This paper focuses on the time series of temperature and precipitation in spring when sandstorms often occur in the area. Based on meteorological data for a 46-year period from 1959 to 2004, multi-scale variations and abrupt changes in temperature and precipitation were analyzed with the Mexican hat function (MHF) wavelet method, showing the multi-scale variation characteristics of temperature and precipitation, as well as the periods and change points at different time scales. The relationship between temperature and precipitation was obtained using the wavelet analysis method. Obvious staggered features of the variations of spring temperature and precipitation were observed in this agro-pastoral ecotone. The strongest oscillation periods of spring temperature variations were 1 and 22 years, while for precipitation, the strongest oscillation periods of variations were 2, 8, and 22 years. In addition, lower spring temperature corresponded to lower precipitation, whereas higher temperature yielded higher precipitation rate.
Abstract:
Phosphorus is one of the most important nutrients required to support various kinds of biodegradation processes. As this particular nutrient is not included in the activated sludge model no. 1 (ASM1), this study extended this model in order to determine the fate of phosphorus during the biodegradation processes. When some of the kinetics parameters are modified using observed data from the restoration project of the Xuxi River in Wuxi City, China, from August 25 to 31 in 2009, the extended model shows excellent results. In order to obtain optimum values of coefficients of nitrogen and phosphorus, the mass fraction method was used to ensure that the final results were reasonable and practically relevant. The temporal distribution of the data calculated with the extended ASM1 approximates that of the observed data.
Abstract:
The hydrodynamic behaviors of a floating breakwater consisting of a rectangular pontoon and horizontal plates are studied theoretically. The fluid motion is idealized as two-dimensional linear potential flow. The motions of the floating breakwater are assumed to be two-dimensional in sway, heave, and roll. The solution to the fluid motion is derived by transforming the governing differential equation into the integral equation on the boundary in time domain with the Green’s function method. The motion equations of the floating breakwater are established and solved with the fourth-order Runge-Kutta method to obtain the displacement and velocity of the breakwater. The mooring forces are computed with the static method. The computational results of the wave transmission coefficient, the motion responses, and the mooring forces of the pontoon-plate floating breakwater are given. It is indicated that the relative width of the pontoon is an important factor influencing the wave transmission coefficient of the floating breakwater. The transmission coefficient decreases obviously as the relative width of the pontoon increases. The horizontal plates help to reduce the wave transmission over the floating breakwater. The motion responses and the mooring forces of the pontoon-plate floating breakwater are less than those of the pontoon floating breakwater. The mooring force at the offshore side is larger than that at the onshore side.
Abstract:
The North Atlantic Oscillation (NAO) is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST), and sea ice cover. In this study, we analyzed the distributions of and correlations between SST, wind speed, NAO, and sea ice cover from 2003 to 2009 in the Greenland Sea at 10°W to 10°E, 65°N to 80°N. SST reached its peak in July, while wind speed reached its minimum in July. Seasonal variability of SST and wind speed was different for different regions. SST and wind speed mainly had negative correlations. Detailed correlation research was focused on the 75°N to 80°N band. Regression analysis shows that in this band, the variation of SST lagged three months behind that of wind speed. Ice cover and NAO had a positive correlation, and the correlation coefficient between ice cover and NAO in the year 2007 was 0.61. SST and NAO also had a positive correlation, and SST influenced NAO one month in advance. The correlation coefficients between SST and NAO reached 0.944 for the year 2005, 0.7 for the year 2008, and 0.74 for the year 2009 after shifting SST one month later. NAO also had a positive correlation with wind speed, and it also influenced wind speed one month in advance. The correlation coefficients between NAO and wind speed reached 0.783, 0.813, and 0.818 for the years 2004, 2005, and 2008, respectively, after shifting wind speed one month earlier.
Abstract:
This paper describes some details and procedural steps in the equivalent resistance (E-R) method for simplifying the pier group of the Sutong Bridge, which is located on the tidal reach of the lower Yangtze River, in Jiangsu Province. Using a two-dimensional tidal current numerical model, three different models were established: the non-bridge pier model, original bridge pier model, and simplified bridge pier model. The difference in hydrodynamic parameters, including water level, velocity, and diversion ratio, as well as time efficiency between these three models is discussed in detail. The results show that simplifying the pier group using the E-R method influences the water level and velocity near the piers, but has no influence on the diversion ratio of each cross-section of the Xuliujing reach located in the lower Yangtze River. Furthermore, the simplified bridge pier model takes half the calculation time that the original bridge pier model needs. Thus, it is concluded that the E-R method can be use to simplify bridge piers in tidal river section modeling reasonably and efficiently.
Abstract:
The capacity and size of hydro-generator units are increasing with the rapid development of hydroelectric enterprises, and the vibration of the powerhouse structure has increasingly become a major problem. Field testing is an important method for research on dynamic identification and vibration mechanisms. Research on optimal sensor placement has become a very important topic due to the need to obtain effective testing information from limited test resources. To overcome inadequacies of the present methods, this paper puts forward the triaxial effective independence driving-point residue (EfI3-DPR3) method for optimal sensor placement. The EfI3-DPR3 method can incorporate both the maximum triaxial modal kinetic energy and linear independence of the triaxial target modes at the selected nodes. It was applied to the optimal placement of triaxial sensors for vibration testing in a hydropower house, and satisfactory results were obtained. This method can provide some guidance for optimal placement of triaxial sensors of underground powerhouses.
Abstract:
Levees are affected by over-exploitation of river sand and river adjustments after the formation of sand pits. The slope stability is seriously threatened, drawing wide concern among experts and scholars in the area of water conservancy. This study analyzed the uncertainties of slope stability of levees under river sand mining conditions, including uncertainty caused by interest- driven over-exploitation by sand mining contractors, and uncertainty of the distance from the slope or sand pit to the bottom of the levee under the action of cross-flow force after the sand pit forms. Based on the results of uncertainty analysis, the distribution and related parameters of these uncertainties were estimated according to the Yangtze River sand mining practice. A risk model of the slope instability of a levee under river sand mining conditions was built, and the possibility of slope instability under different slope gradients in a certain reach of the Yangtze River was calculated with the Monte Carlo method and probability combination method. The results indicated that the probability of instability risk rose from 2.38% to 4.74% as the pits came into being.
Abstract:
According to the multi-project and program management theory, this paper analyzes the program generation principle and establishes a program based on progress goals. On the basis of the present situation of calculation of penalty for delay of the bidding section construction period with the critical path method, we studied the effects of contractor-induced delay of the bidding section construction period in detail, including the effects on the construction period of the bidding section itself, the earliest start times of the next bidding section and other subsequent bidding sections, and the construction period of the program, and then constructed a penalty model for delay of the bidding section construction period from the perspective of programs. Using the penalty model, we conducted a practical analysis of penalty for delay of the construction period of the Baoying station program in the South-to-North Water Diversion Project. The model can help determine the amount of penalty for delay of the construction period in bidding sections scientifically and reasonably.