Zheng Bing Wang, Ian Townend, Marcel Stive. 2020: Aggregated morphodynamic modelling of tidal inlets and estuaries. Water Science and Engineering, 13(1): 1-13. doi: 10.1016/j.wse.2020.03.004
Citation: Zheng Bing Wang, Ian Townend, Marcel Stive. 2020: Aggregated morphodynamic modelling of tidal inlets and estuaries. Water Science and Engineering, 13(1): 1-13. doi: 10.1016/j.wse.2020.03.004

Aggregated morphodynamic modelling of tidal inlets and estuaries

doi: 10.1016/j.wse.2020.03.004
More Information
  • Corresponding author: Ian Townend
  • Received Date: 2019-09-16
  • Rev Recd Date: 2020-02-10
  • Aggregation is used to represent the real world in a model at an appropriate level of abstraction. We used the convection-diffusion equation to examine the implications of aggregation progressing from a three-dimensional (3D) spatial description to a model representing a system as a single box that exchanges sediment with the adjacent environment. We highlight how all models depend on some forms of parametric closure, which need to be chosen to suit the scale of aggregation adopted in the model. All such models are therefore aggregated and make use of some empirical relationships to deal with sub-scale processes. One such appropriately aggregated model, the model for the aggregated scale morphological interaction between tidal basin and adjacent coast (ASMITA), is examined in more detail and used to illustrate the insight that this level of aggregation can bring to a problem by considering how tidal inlets and estuaries are impacted by sea level rise.

     

  • Carrasco, A.R., Ferreira, Ó., Roelvink, D., 2016. Coastal lagoons and rising sea level: A review. Earth-Science Reviews, 154, 356-368. https://doi.org/10.1016/j.earscirev.2015.11.007.
    Cowell, P.J., Stive, M.J.E., Niedoroda, A., de Vriend, H.J., Swift, D., Kaminsky, G.M., Capobianco, M., 2003. The coastal-tract (Part 1): A conceptual approach to aggregated modelling of low-order coastal change. Journal of Coastal Research, 19(4), 812-827.
    Dam, G., van der Wegen, M., Labeur, R.J., Roelvink, D., 2016. Modeling centuries of estuarine morphodynamics in the Western Scheldt estuary. Geophysical Research Letters, 43(8), 3839-3847. https://doi.org/10.1002/2015gl066725.
    Deltacommissie, 2008. Working Together with Water, Report of Deltacommissie. Deltacommissie, Rotterdam .
    Di Silvio, G., 1989. Modelling the morphological evolution of tidal lagoons and their equilibrium configurations. In: Proceedings of the 13th Congress of IAHR. IAHR, pp. C-169-C-175.
    Di Silvio, G., Dall'Angelo, C., Bonaldo, D., Fasolato, G., 2010. Long-term model of planimetric and bathymetric evolution of a tidal lagoon. Continental Shelf Research, 30(8), 894-903. https://doi.org/10.1016/j.csr.2009.09.010.
    Elias, E.P.L., van der Spek, A.J.F., Wang, Z.B., de Ronde, J.G., 2012. Morphodynamic development and sediment budget of the Dutch Wadden Sea over the last century. Netherlands Journal of Geosciences, 91(3), 293-310. https://doi.org/10.1017/s0016774600000457.
    Eysink, W.D., 1990. Morphological response of tidal basins to change. In: Proceedings of the 22nd International Conference on Coastal Engineering. ASCE, Delft, pp. 1948-1961. https://doi.org/10.1061/9780872627765.149..
    Eysink, W.D., Biegel, E.J., 1992. Impact of Sea Level Rise on the Morphology of the Wadden Sea in the Scope of Its Ecological Function. ISOS*2 Project, Phase 2, Report H1300. WL|Delft Hydraulics, Delft.
    Fokker, P.A., van Leijen, F., Orlic, B., van der Marel, H., Hanssen, R., 2018. Subsidence in the Dutch Wadden Sea. Netherlands Journal of Geosciences, 97(3), 129-181. https://doi.org/10.1017/njg.2018.9.
    Galappatti, G., Vreugdenhil, C.B., 1985. A depth integrated model for suspended sediment transport. Journal of Hydraulic Research, 23(4), 359-375. https://doi.org/10.1080/00221688509499345.
    Hinkel, J., Nicholls, R.J., Tol, R.S.J., Wang, Z.B., Hamilton, J.M., Boot, G., Vafeidis, A.T., McFadden, L., Ganopolski, A., Klein, R.J.T., 2013. A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA. Global and Planetary Change, 111, 150-158. https://doi.org/10.1016/j.gloplacha.2013.09.002.
    Jeuken, M.C.J.L., Wang, Z.B., Keiller, D., Townend, I.H., Like, G.A., 2003. Morphological response of estuaries to nodal tide variation. In: Proceedings of International Conference on Estuaries and Coasts (ICEC-2003), pp. 166-173.
    Koninklijk Nederlands Meteorologisch Instituut (KNMI), 2017. Extreme Zeespiegelstijging in de 21e Eeuw. KNM (in Dutch).
    Kragtwijk, N.G., Zitman, T.J., Stive, M.J.F., Wang, Z.B., 2004. Morphological response of tidal basins to human interventions. Coastal Engineering, 51(3), 207-221.https://doi.org/10.1016/j.coastaleng.2003.12.008.
    Lacey, G., 1930. Stable channels in alluvium. Minutes of the Proceedings of the Institution of Civil Engineers, 229, 259-292, https://doi.org/10.1680/imotp.1930.15592.
    Langbein, W.B., 1963. The hydraulic geometry of a shallow estuary. Bulletin of Int Assoc Sci Hydrology, 8(3), 84-94. https://doi.org/10.1080/02626666309493340.
    Le Bars, D., Drijfhout, S., de Vries, H., 2017. A high-end sea level rise probabilistic projection including rapid Antarctic ice sheet mass loss. Environmental Research Letters, 12(4), 044013. https://doi.org/10.1088/1748-9326/aa6512.
    Leopold, L.B., Langbein, W.B., 1962. The Concept of Entropy in Landscape Evolution, Geological Survey Professional Paper 500-A. United States Government Printing Office, Washington, D.C. https://doi.org/10.3133/pp500a.
    Lodder, Q.J., Wang, Z.B., Elias, E.P.L., van der Spek, A.J.F., de Looff, H., Townend, I.H., 2019. Future response of the Wadden Sea tidal basins to relative sea-level rise: An aggregated modelling approach. Water, 11(10). https://doi.org/10.3390/w11102198.
    Meehl, G., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., et al., 2007. Global climate projections, 2007. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Mille, H.L., eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 996.
    Nichols, M.M., 1989. Sediment accumulation rates and relative sea-level rise in lagoons. Marine Geology, 88(3-4), 201-219. https://doi.org/10.1016/0025-3227(89)90098-4.
    O'Connor, B.A., Nicholson, J., Rayner, R., 1990. Estuary geometry as a function of tidal range. In: Proceedings of the 22nd International Conference on Coastal Engineering. American Society of Civil Engineers, pp. 3050-3062. https://doi.org/10.1061/9780872627765.233.
    Renger, E., Partenscky, H.W., 1974. Stability criteria for tidal basins. In: Proceedings of the 14th Coastal Engineering Conference, Vol. 2. ASCE, pp.1605-1618.
    Roelvink, D., Reniers, A., 2012. A guide to modelling coastal morphology. In: Advances in Coastal and Ocean Engineering, Vol. 12. World Scientific Publishing, Singapore. https://doi.org/10.1142/7712. 
    Rossington, K., Nicholls, R.J., Knaapen, M.A.F., Wang, Z.B., 2007. Morphological behaviour of UK estuaries under conditions of accelerating sea level rise. In: Dohmen-Janssen, C.M., Hulscher, S.J.M.H., eds., River, Coastal and Estuarine Morphodynamics: RCEM2007. Taylor & Francis. https://doi.org/10.1201/noe0415453639-c16.
    Soulsby, R., 1997. Dynamics of Marine Sands. Thomas Telford, London.
    Spearman, J., 2007. Hybrid Modelling of Managed Realignment, Series No. TR157. HR Wallingford, Wallingford.
    Stive, M.J.F., Roelvink, J.A., de Vriend, H.J., 1990. Large-scale coastal evolution concept. The Dutch Coast, Paper No. 9. In: Louisse, C.J., Stive, M.J.F., Wiersma, J., eds., Proceedings of the 22nd International Conference on Coastal Engineering, 1990: The Dutch Coast. American Society of Civil Engineers,  p. 13. https://doi.org/10.1061/9780872627765.150.
    Stive, M.J.F., Capobianco, M., Wang, Z.B., Ruol, P., Buijsman, M.C., 1998. Morphodynamics of a tidal lagoon and adjacent coast. In: Dronkers, J., Scheffers M.B.A.M., eds., Proceedings of the 8th International Biennial Conference on Physics of Estuaries and Coastal Seas. A A Balkema, pp. 397-407.
    Stive, M.J.F., Wang, Z.B., 2003. Morphodynamic modelling of tidal basins and coastal inlets. In: Lakkhan, C., ed., Advances in Coastal Modelling. Elsevier Sciences, Amsterdam, pp. 367-392. https://doi.org/10.1016/s0422-9894(03)80130-7.
    Townend, I.H., Wang, Z.B., Stive, M.J.E., Zhou, Z., 2016a. Development and extension of an aggregated scale model, Part 1: Background to ASMITA. China Ocean Engineering, 30(4), 482-504. https://doi.org/10.1007/s13344-016-0030-x.
    Townend, I.H., Wang, Z.B., Stive, M.J.E., Zhou, Z., 2016b. Development and extension of an aggregated scale model, Part 2: Extensions to ASMITA. China Ocean Engineering, 30(5), 651-670. https://doi.org/10.1007/s13344-016-0042-6.
    Townend, I.H., Wang, Z.B., Rees, J.G., 2007. Millennial to annual volume changes in the Humber Estuary. Proceedings of  the Royal Society A: Mathematical, Physical and Engineering Science,  463(2079), 837-854. https://doi.org/10.1098/rspa.2006.1798.
    Townend, I.H., 2010. An exploration of equilibrium in Venice Lagoon using an idealised form model. Continental Shelf Research, 30(8), 984-999. https://doi.org/10.1016/j.csr.2009.10.012.
    van der Spek, A.J.F., Beets, D.J., 1992. Mid-Holocene evolution of a tidal basin in the western Netherlands: A model for future changes in the northern Netherlands under conditions of accelerated sea-level rise? Sedimentary Geology, 80(3-4), 185-197. https://doi.org/10.1016/0037-0738(92)90040-x.
    van der Wegen, M., Wang, Z.B., Townend, I.H., Savenije, H.H.G., Roelvink, J.A., 2009. Long-term, morphodynamic modeling of equilibrium in an alluvial tidal basin using a process-based approach. In: Proceedings of the 6th Symposium on River, Coastal and Estuarind Morphodynamics. IAHR.
    van Goor, M.A., Zitman, T.J., Wang, Z.B., Stive, M.J.F., 2003. Impact of sea-level rise on the morphological equilibrium state of tidal inlets. Marine Geology, 202, 211-227. https://doi.org/10.1016/s0025-3227(03)00262-7.
    van Rijn, L.C., 1993. Principles of Sediment Transport in Rivers, Estuaires and Coastal Seas. Aqua Publications, Amsterdam.
    Vermeersen, L.L.A., Slangen, A.B.A., Gerkema, T., Baart, F., Cohen, K.M., Dangendorf, S., Duran-Matute, M., Frederikse, T., Grinsted, A., Hijma, M.P., et al., 2018. Sea level change in the Dutch Wadden Sea. Netherlands Journal of Geosciences, 97(3), 79-127. https://doi.org/10.1017/njg.2018.7.
    Walton, T.L., Adams, W.D., 1976. Capacity of inlet outer bars to store sand. In: Proceedings of the 15th Coastal Engineering Conference. ASCE, Honolulu, pp. 1919-1937.
    Wang, Z.B., 1992. Theoretical analysis on depth-integrated modelling of suspended sediment transport. Journal of Hydraulic Research, 30(3), 403-420. https://doi.org/10.1080/00221689209498927..
    Wang, Z.B., Karssen, B., Fokkink, R.J., Langerak, A., 1998. A dynamic-empirical model for estuarine morphology. In: Dronkers, J., Scheffers, M.B.A.M., eds., Physics of Estuaries and Coastal Seas. A.A. Balkema, Rotterdam, pp. 279-286.
    Wang, Z.B., de Vriend, H.J., Stive, M.J.F., Townend, I.H., 2008. On the parameter setting of semi-empirical long-term morphological models for estuaries and tidal lagoons. In: Dohmen-Janssen, C.M., Hulscher, S.J.M.H., eds., River, Coastal and Estuarine Morphodynamics: RCEM 2007. Taylor & Francis, pp. 103-111. https://doi.org/10.1201/noe0415453639-c14.
    Wang, Z.B., Hoekstra, P., Burchard, H., Ridderinkhof, H., de Swart, H.E., Stive, M.J.F., 2012. Morphodynamics of the Wadden Sea and its barrier island system. Ocean & Coastal Management, 68, 39-57. https://doi.org/10.1016/j.ocecoaman.2011.12.022.
    Wang, Z.B., Townend, I.H., 2012. Influence of the nodal tide on the morphological response of estuaries. Marine Geology, 291-294, 73-82. https://doi.org/10.1016/j.margeo.2011.11.007.
    Wang, Z.B., Elias, E.P.L., van der Spek, A.J.F., Lodder, Q.L., 2018. Sediment budget and morphological development of the Dutch Wadden Sea: impact of accelerated sea-level rise and subsidence until 2100. Netherlands Journal of Geosciences, 97(3), 183-214. https://doi.org/10.1017/njg.2018.8.
    Winterwerp, J.C., van Kesteren, W.G.M., van Prooijen, B., Jacobs, W., 2012. A conceptual framework for shear flow-induced erosion of soft cohesive sediment beds. Journal of Geophysical Research, 117(C10). https://doi.org/10.1029/2012jc008072.
    Wright, A.D., Townend, I.H., 2006. Predicting long term estuary evolution using regime theory. In: Littoral 2006 Conference Proceedings. Gdańsk University of Technology, Gdańsk, pp. 1-9.
  • Relative Articles

    Guo-fen Hua, Shang-qing Liu, Xiang-dong Liu, Jin-li Li, Yue Fang, Wen-ting Xie, Xiang Xu. 2024: Seasonal response of nitrogen exchange fluxes to crab disturbance at sediment-water interface in coastal tidal wetlands. Water Science and Engineering, 17(2): 129-138. doi: 10.1016/j.wse.2023.11.007
    V. Koutitonsky, J.A. Zyserman, B. Zourarah, A. Orbi, K. El Khalidi, A. Benali. 2024: Tidal asymmetry and mud transport in Oualidia Lagoon: Actual conditions in 2012 and rehabilitation scenarios. Water Science and Engineering, 17(4): 344-351. doi: 10.1016/j.wse.2024.01.002
    Xi Feng, Zheng Li, Hui Feng, Jia-yan Yang, Shou-peng Xie, Wei-bing Feng. 2024: Contributors to tidal duration asymmetry with varied coastline configurations on western shelf of Yellow Sea. Water Science and Engineering, 17(1): 1-12. doi: 10.1016/j.wse.2023.09.006
    Vu Minh Tuan, Nguyen Viet Thanh, Trinh Dinh Lai. 2024: Assessing impacts of climate change-driven sea level rise on hydrodynamics and sediment dynamics along Ba Lang beaches in Nha Trang Bay, Khanh Hoa, Vietnam. Water Science and Engineering, 17(4): 323-335. doi: 10.1016/j.wse.2023.12.003
    Shuang-qing Zhang, Jia-chun Liu, Biao Huang, Jian Zhang. 2023: Numerical study of geyser events in rainstorm systems at different scales. Water Science and Engineering, 16(4): 381-389. doi: 10.1016/j.wse.2023.07.002
    Heng-zhi Jiang, Yong-peng Ji, Ming-liang Zhang. 2023: Modeling impact of culture facilities on hydrodynamics and solute transport in marine aquaculture waters of North Yellow Sea. Water Science and Engineering, 16(1): 26-35. doi: 10.1016/j.wse.2022.10.005
    Tim J. Grandjean, Jaco C. de Smit, Jim van Belzen, Gregory S. Fivash, Jeroen van Dalen, Tom Ysebaert, Tjeerd J. Bouma. 2023: Morphodynamic signatures derived from daily surface elevation dynamics can explain the morphodynamic development of tidal flats. Water Science and Engineering, 16(1): 14-25. doi: 10.1016/j.wse.2022.11.003
    Chaiyuth Chinnarasri. 2022: Engineering application of submerged water jets for sediment removal in a tidal riverbed. Water Science and Engineering, 15(4): 348-357. doi: 10.1016/j.wse.2022.07.002
    Zeng Zhou, Meng-jiao Liang, Lei Chen, Meng-piao Xu, Xue Chen, Liang Geng, Huan Li, Daniel Serrano, He-yue Zhang, Zheng Gong, Chang-kuan Zhang. 2022: Processes, feedbacks, and morphodynamic evolution of tidal flatemarsh systems:Progress and challenges. Water Science and Engineering, 15(2): 89-102. doi: 10.1016/j.wse.2021.07.002
    En-jin Zhao, Lin Mu, Ke Qu, Bing Shi, Xing-yue Ren, Chang-bo Jiang. 2018: Numerical investigation of pollution transport and environmental improvement measures in a tidal bay based on a Lagrangian particle-tracking model. Water Science and Engineering, 11(1): 23-38. doi: 10.1016/j.wse.2017.08.001
    Jia-heng Zhao, Ilhan Özgen, Dong-fang Liang, Reinhard Hinkelmann. 2017: Comparison of depth-averaged concentration and bed load flux sediment transport models of dam-break flow. Water Science and Engineering, 10(4): 287-294. doi: 10.1016/j.wse.2017.12.006
    Hai-bo Yang, En-chong Li, Yong Zhao, Qiu-hua Liang. 2017: Effect of water-sediment regulation and its impact on coastline and suspended sediment concentration in Yellow River Estuary. Water Science and Engineering, 10(4): 311-319. doi: 10.1016/j.wse.2017.12.009
    Qi Zhou, Wei Wang, Yong Pang, Zhi-yong Zhou, Hui-ping Luo. 2015: Temporal and spatial distribution characteristics of water resources in Guangdong Province based on a cloud model. Water Science and Engineering, 8(4): 263-272. doi: 10.1016/j.wse.2015.09.001
    Shao-lei GUO, Dong-po SUN, En-hui JIANG, Peng LI. 2015: Equilibrium sediment transport in lower Yellow River during later sediment-retaining period of Xiaolangdi Reservoir. Water Science and Engineering, 8(1): 78-84. doi: 10.1016/j.wse.2015.01.006
    Yun-ping YANG, Yi-tian LI, Yong-yang FAN, Jun-hong ZHANG. 2014: Impact of water and sediment discharges on subaqueous delta evolution in Yangtze Estuary from 1950 to 2010. Water Science and Engineering, 7(3): 331-343. doi: 10.3882/j.issn.1674-2370.2014.03.008
    Chang-lin CHEN, Jun-cheng ZUO, Mei-xiang CHEN, Zhi-gang GAO, C.-K. SHUM. 2014: Sea level change under IPCC-A2 scenario in Bohai, Yellow, and East China Seas. Water Science and Engineering, 7(4): 446-456. doi: 10.3882/j.issn.1674-2370.2014.04.009
    Jun-cheng ZUO, Qian-qian HE, Chang-lin CHEN, Mei-xiang CHEN, Qing XU. 2012: Sea level variability in East China Sea and its response to ENSO. Water Science and Engineering, 5(2): 164-174. doi: 10.3882/j.issn.1674-2370.2012.02.005
    Zheng GONG, Chang-kuan ZHANG, Cheng-biao ZUO, Wei-deng WU. 2011: Sediment transport following water transfer from   Yangtze River to Taihu Basin. Water Science and Engineering, 4(4): 431-444. doi: 10.3882/j.issn.1674-2370.2011.01.007
    Gui-hua LU, Qian MA, Jian-hua ZHANG. 2011: Analysis of black water aggregation in Taihu Lake. Water Science and Engineering, 4(4): 374-385. doi: 10.3882/j.issn.1674-2370.2011.04.002
    Xu Fumin, Zhang Changkuan, Mao Lihua, Tao Jianfeng. 2008: Effects of storm waves on rapid deposition of sediment in the Yangtze Estuary channel. Water Science and Engineering, 1(1): 27-36 . doi: 10.3882/j.issn.1674-2370.2008.01.004
  • Cited by

    Periodical cited type(8)

    1. Jinoj, T.P.S., Panda, U.S., Vijay, A. et al. Hydro-ecological modelling of a hypersaline lagoon ecosystem (Pulicat) in Southeast coast of India. Estuarine, Coastal and Shelf Science, 2024. doi:10.1016/j.ecss.2024.108833
    2. van Maren, D.S., Colina Alonso, A., Engels, A. et al. Adaptation timescales of estuarine systems to human interventions. Frontiers in Earth Science, 2023. doi:10.3389/feart.2023.1111530
    3. Garnier, R., Townend, I., Monge-Ganuzas, M. et al. Modelling the morphological response of the Oka estuary (SE Bay of Biscay) to climate change. Estuarine, Coastal and Shelf Science, 2022. doi:10.1016/j.ecss.2022.108133
    4. Pearson, S.G., Elias, E.P.L., van Prooijen, B.C. et al. A novel approach to mapping ebb-tidal delta morphodynamics and stratigraphy. Geomorphology, 2022. doi:10.1016/j.geomorph.2022.108185
    5. Lodder, Q., Huismans, Y., Elias, E. et al. Future sediment exchange between the Dutch Wadden Sea and North Sea Coast - Insights based on ASMITA modelling. Ocean and Coastal Management, 2022. doi:10.1016/j.ocecoaman.2022.106067
    6. Huismans, Y., van der Spek, A., Lodder, Q. et al. Development of intertidal flats in the Dutch Wadden Sea in response to a rising sea level: Spatial differentiation and sensitivity to the rate of sea level rise. Ocean and Coastal Management, 2022. doi:10.1016/j.ocecoaman.2021.105969
    7. Panwar, A., Bhatnagar, V., Khari, M. et al. A Blockchain Framework to Secure Personal Health Record (PHR) in IBM Cloud-Based Data Lake. Computational Intelligence and Neuroscience, 2022. doi:10.1155/2022/3045107
    8. Townend, I., Zhou, Z., Guo, L. et al. A morphological investigation of marine transgression in estuaries. Earth Surface Processes and Landforms, 2021, 46(3): 626-641. doi:10.1002/esp.5050

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.8 %FULLTEXT: 24.8 %META: 56.2 %META: 56.2 %PDF: 19.0 %PDF: 19.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.2 %其他: 5.2 %China: 61.4 %China: 61.4 %India: 2.9 %India: 2.9 %Reserved: 18.6 %Reserved: 18.6 %United States: 11.9 %United States: 11.9 %其他ChinaIndiaReservedUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (476) PDF downloads(446) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return