Volume 16 Issue 2
Jun.  2023
Turn off MathJax
Article Contents
Kai Chen, Qi-meng Liu, Wei-hua Peng, Yu Liu, Zi-tao Wang. 2023: Source apportionment of river water pollution in a typical agricultural city of Anhui Province, eastern China using multivariate statistical techniques with APCS– MLR. Water Science and Engineering, 16(2): 165-174. doi: 10.1016/j.wse.2022.12.007
Citation: Kai Chen, Qi-meng Liu, Wei-hua Peng, Yu Liu, Zi-tao Wang. 2023: Source apportionment of river water pollution in a typical agricultural city of Anhui Province, eastern China using multivariate statistical techniques with APCS– MLR. Water Science and Engineering, 16(2): 165-174. doi: 10.1016/j.wse.2022.12.007

Source apportionment of river water pollution in a typical agricultural city of Anhui Province, eastern China using multivariate statistical techniques with APCS– MLR

doi: 10.1016/j.wse.2022.12.007
Funds:

This work was supported by the 2021 Graduate Science Research Project of the Anhui Higher Education Institutions (Grant No. YJS20210375), the Natural Science Research Project of Universities in Anhui Province (Grant No. KJ2020ZD64), the Natural Science Foundation of Anhui Province (Grant No. 2008085MD122), the Outstanding Young Talents in Higher Education Institutions of Anhui Province (Grant No. ZD2021134), and the Research Development Foundation of Suzhou University (Grant No. 2021fzjj28).

  • Received Date: 2021-12-22
  • Accepted Date: 2022-12-30
  • Rev Recd Date: 2022-12-18
  • Available Online: 2023-05-11
  • The deterioration of the surface water environment has become a serious challenge for water resources management due to increasing anthropogenic disturbance. Water resources protection requires control of potential pollution sources. In this study, 99 water samples were collected from a river in a typical agricultural city of Anhui Province in eastern China, and these samples were analyzed in terms of pH, electrical conductivity, and the concentrations of F-, Cl-, SO42-, Na+, K+, Mg2+, Ca2+, As, Cr, Cu, Zn, and Pb. Cluster analysis, co-occurrence network analysis, and principal component analysis/factor analysis were conducted to qualitatively identify the potential sources of river water pollution in the study area. An absolute principal component score-multiple linear regression receptor model was used to quantitatively evaluate the contribution of each source to water quality parameters. The results showed that all observed water quality indices met the quality criteria specified in the Chinese drinking water standards, except for pH, ρ(F-), ρ(SO42-), and ρ(As). The heat map showed that the frequent recharge of pollutants from the tributaries during the wet season was the main reason for the deterioration of water quality. Five sources of river water pollution were identified, and their contribution ratios in a descending order were as follows: the geogenic process (24%) > agricultural activities (21%) > poultry farming sources (17%) > domestic pollution (9%) > transportation pollution (5%). Therefore, controlling pollution from agricultural activities, strengthening the regulation of livestock farming, and improving the sewage network are the recommended strategies for improving the quality of surface water resources in this area.

     

  • loading
  • Barakat, A., El Baghdadi, M., Rais, J., Aghezzaf, B., Slassi, M., 2016.Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. International Soil and Water Conservation Research 4, 284-292. https://doi.org/10.1016/j.iswcr.2016.11.002.
    Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi:An open source software for exploring and manipulating networks. In:Proceeding of International AAAI Conference on Weblogs and Social Media. Association for the Advancement of Artificial Intelligence, San Jose, pp. 361-362.
    Cao, X., Lu, Y., Wang, C., Zhang, M., Yuan, J., Zhang, A., Song, S., Baninla, Y., Khan, K., Wang, Y., 2019. Hydrogeochemistry and quality of surface water and groundwater in the drinking water source area of an urbanizing region. Ecotoxicol. Environ. Saf. 186, 109628. https://doi.org/10.1016/j.ecoenv.2019.109628.
    Chattopadhyay, A., Singh, A.P., Singh, S.K., Barman, A., Patra, A., Mondal, B.P., Banerjee, K., 2020. Spatial variability of arsenic in IndoGangetic basin of Varanasi and its cancer risk assessment. Chemosphere 238, 124623. https://doi.org/10.1016/j.chemosphere.2019.124623.
    Chen, K., Sun, L., Liu, Q., Cao, W., Tang, J., 2019. Quality evaluation and its controlling factor analyses of shallow groundwater in the urban area of Suzhou, Anhui province, China. Fresenius Environ. Bull. 28(9), 6801-6807.
    Chen, K., Sun, L., Tang, J., 2020. Hydrochemical differences between river water and groundwater in Suzhou, northern Anhui Province, China. Open Geosci. 12(1), 1421-1429. https://doi.org/10.1515/geo-2020-0203.
    Dai, L., Wang, L., Liang, T., Zhang, Y., Li, J., Xiao, J., Dong, L., Zhang, H., 2019. Geostatistical analyses and co-occurrence correlations of heavy metals distribution with various types of land use within a watershed in eastern Qinghai-Tibet Plateau, China. Sci. Total Environ. 653, 849-859.https://doi.org/10.1016/j.scitotenv.2018.10.386.
    Gholizadeh, M.H., Melesse, A.M., Reddi, L., 2016. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci.Total Environ. 566-567, 1552-1567. https://doi.org/10.1016/j.scitotenv.2016.06.046.
    Gulgundi, M.S., Shetty, A., 2019. Source apportionment of groundwater pollution using Unmix and positive matrix factorization. Environ. Process 6, 457-473. https://doi.org/10.1007/s40710-019-00373-y.
    Guo, Q., Wang, Y., Liu, W., 2008. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China. Environ. Geol. 56, 197-205. https://doi.org/10.1007/s00254-007-1155-2.
    Hjortenkrans, D., Bergbäck, B., Häggerud, A., 2006. New metal emission patterns in road traffic Environments. Environ. Monit. Assess. 117, 85-98.https://doi.org/10.1007/s10661-006-7706-2.
    Hou, X.K., Zhang, K., Duan, P.Z., Wang, X., Ta, L., Guo, Y., Xia, R., 2021.Pollution source apportionment of Tuohe River based on absolute principal component scores-multiple linear regression. Res. Environ. Sci. 5, 1-12.https://doi.org/10.13198/j.issn.1001-6929.2021.05.30 (in Chinese).
    Hu, J., Zhu, C., Long, Y., Yang, Q., Zhou, S., Wu, P., Jiang, J., Zhou, W., Hu, X., 2021. Interaction analysis of hydrochemical factors and dissolved heavy metals in the karst Caohai Wetland based on PHREEQC, cooccurrence network and redundancy analyses. Sci. Total Environ. 770, 145361.https://doi.org/10.1016/j.scitotenv.2021.145361.
    Jin, Z., Zhang, L., Lv, J., Sun, X., 2021. The application of geostatistical analysis and receptor model for the spatial distribution and sources of potentially toxic elements in soils. Environ. Geochem. Health 43, 407-421. https://doi.org/10.1007/s10653-020-00729-6.
    Kaiser, H.F., 1974. An index of factorial simplicity. Psychometrika 39, 31-36.https://doi.org/10.1007/BF02291575.
    Li, C., Gao, X., Wang, Y., 2015. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Sci. Total Environ. 508, 155-165. https://doi.org/10.1016/j.scitotenv.2014.11.045.
    Li, D., Gao, X., Wang, Y., Luo, W., 2018. Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China.Environ. Pollut. 237, 430-441. https://doi.org/10.1016/j.envpol.2018.02. 072.
    Li, P., Qian, H., Wu, J., Chen, J., Zhang, Y., Zhang, H., 2014. Occurrence and hydrogeochemistry of fluoride in alluvial aquifer of Weihe River, China.Environ. Earth Sci. 71, 3133-3145. https://doi.org/10.1007/s12665-013-2691-6.
    Li, W.Q., Wu, J.H., Zhou, C.J., Nsabimana, A., 2021a. Groundwater pollution source identification and apportionment using PMF and PCA-APCS-MLR receptor models in Tongchuan City, China. Arch. Environ. Contam. Toxicol. 81(3), 397-413. https://doi.org/10.1007/s00244-021-00877-5.
    Li, X., Masuda, H., Liu, C., 2008. Chemical and isotopic compositions of the Minjiang river, a headwater tributary of the Yangtze river. J. Environ. Qual. 37, 409-416. https://doi.org/10.2134/jeq2006.0554.
    Li, Y.L., Li, P.Y., Liu, L.N., 2021b. Source identification and potential ecological risk assessment of heavy metals in the topsoil of the Weining Plain (northwest China). Expo. Health 348, 1-14. https://doi.org/10.1007/s12403-021-00438-0.
    Liu, C.W., Lin, K.H., Kuo, Y.M., 2003. Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan.Sci. Total Environ. 313, 77-89. https://doi.org/10.1016/S0048-9697(02)00683-6.
    Liu, L., Wang, Z., Ju, F., Zhang, T., 2015. Co-occurrence correlations of heavy metals in sediments revealed using network analysis. Chemosphere 119, 1305-1313. https://doi.org/10.1016/j.chemosphere.2014.01.068.
    Liu, L., Tang, Z., Kong, M., Chen, X., Zhou, C., Huang, K., Wang, Z., 2019.Tracing the potential pollution sources of the coastal water in Hong Kong with statistical models combining APCS-MLR. J. Environ. Manag. 245, 143-150. https://doi.org/10.1016/j.jenvman.2019.05.066.
    Liu, Y., Guo, H., Yang, P., 2010. Exploring the influence of lake water chemistry on chlorophyll a:A multivariate statistical model analysis. Ecol.Model. 221, 681-688. https://doi.org/10.1016/j.ecolmodel.2009.03.010.
    Ministry of Ecology and Environment of China (MEEC), 2019. Bulletin of Ecology and Environment in China in 2019. Ministry of Ecology and Environment of China, Beijing (in Chinese).
    Ministry of Health of the People's Republic of China (MHOC), Standardization Administration of China (SAC), 2007. Standards for Drinking Water Quality (GB/T 5749-2006). China Standards Press, Beijing (in Chinese).
    Nagaraju, A., Thejaswi, A., Sun, L., 2016. Statistical analysis of high fluoride groundwater hydrochemistry in Southern India:Quality assessment and implications for source of fluoride. Environ. Eng. Sci. 33, 471-477.https://doi.org/10.1089/ees.2015.0511.
    Pant, P., Harrison, R.M., 2012. Critical review of receptor modelling for particulate matter:A case study of India. Atmos. Environ. 49, 1-12.https://doi.org/10.1016/j.atmosenv.2011.11.060.
    Postigo, C., Ginebreda, A., Barbieri, M.V., Barceló, D., Martín-Alonso, J., de la Cal, A., Boleda, M.R., Otero, N., Carrey, R., Sol a, V., et al., 2021. Investigative monitoring of pesticide and nitrogen pollution sources in a complex multi-stressed catchment:The lower Llobregat River basin case study (Barcelona, Spain). Sci. Total Environ. 755, 142377. https://doi.org/10.1016/j.scitotenv.2020.142377.
    Rashid, A., Guan, D.X., Farooqi, A., Khan, S., Zahir, S., Jehan, S., Khattak, S.A., Khan, M.S., Khan, R., 2018. Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan. Sci. Total Environ. 635, 203-215. https://doi.org/10.1016/j.scitotenv.2018.04.064.
    Ravindra, K., Thind, P.S., Mor, S., Singh, T., Mor, S., 2019. Evaluation of groundwater contamination in Chandigarh:Source identification and health risk assessment. Environ. Pollut. 255, 113062. https://doi.org/10.1016/j.envpol.2019.113062.
    Reitz, A., Hemric, E., Hall, K.K., 2021. Evaluation of a multivariate analysis modeling approach identifying sources and patterns of nonpoint fecal pollution in a mixed use watershed. J. Environ. Manag. 277, 111413.https://doi.org/10.1016/j.jenvman.2020.111413.
    Sun, L., Peng, W., Cheng, C., 2016. Source estimating of heavy metals in shallow groundwater based on Unmix model:A case study. Indian J. Geo Mar. Sci. 45, 756-762.
    Sun, L., 2020. Pollution assessment and source approximation of trace elements in the farmland soil near the trafficway. J. Environ. Eng. Landsc.Manag. 28, 20-27. https://doi.org/10.3846/jeelm.2020.11745.
    Thurston, G.D., Spengler, J.D., 1985. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 19, 9-25. https://doi.org/10.1016/0004-6981(85)90132-5.
    Wang, L., Gao, S., Yin, X., Yu, X., Luan, L., 2019. Arsenic accumulation, distribution and source analysis of rice in a typical growing area in north China. Ecotoxicol. Environ. Saf. 167, 429-434. https://doi.org/10.1016/j.ecoenv.2018.10.015.
    Wang, Y., Zhang, L., Wang, J., Lv, J., 2020. Identifying quantitative sources and spatial distributions of potentially toxic elements in soils by using three receptor models and sequential indicator simulation. Chemosphere 242, 125266. https://doi.org/10.1016/j.chemosphere.2019.125266.
    World Health Organization (WHO), 2017. Guidelines for Drinking-Water Quality:Fourth Edition Incorporating the First Addendum. World Health Organization, Geneva.
    Wu, W., 2016. Hydrochemistry of inland rivers in the north Tibetan Plateau:Constraints and weathering rate estimation. Sci. Total Environ. 541, 468-482. https://doi.org/10.1016/j.scitotenv.2015.09.056.
    Wu, W., Zheng, H., Yang, J., Luo, C., Zhou, B., 2013. Chemical weathering, atmospheric CO2 consumption, and the controlling factors in a subtropical metamorphic-hosted watershed. Chem. Geol. 356, 141-150. https://doi.org/10.1016/j.chemgeo.2013.08.014.
    Xiao, R., Guo, D., Ali, A., Mi, S., Liu, T., Ren, C., Li, R., Zhang, Z., 2019.Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils:A case study in Hanzhong, Shaanxi, China. Environ. Pollut. 248, 349-357. https://doi.org/10.1016/j.envpol.2019.02.045.
    Xu, Z., Xu, J., Yin, H., Jin, W., Li, H., He, Z., 2019. Urban river pollution control in developing countries. Nat. Sustain. 2(3), 158-160. https://doi.org/10.1038/s41893-019-0249-7.
    Yang, J., Holbach, A., Wilhelms, A., Krieg, J., Qin, Y., Zheng, B., Zou, H., Qin, B., Zhu, G., Wu, T., Norra, S., 2020. Identifying spatio-temporal dynamics of trace metals in shallow eutrophic lakes on the basis of a case study in Lake Taihu, China. Environ. Pollut. 264, 114802. https://doi.org/10.1016/j.envpol.2020.114802.
    Zhai, Y., Zheng, F., Zhao, X., Xia, X., Teng, Y., 2019. Identification of hydrochemical genesis and screening of typical groundwater pollutants impacting human health:A case study in northeast China. Environ. Pollut. 252, 1202-1215. https://doi.org/10.1016/j.envpol.2019.05.158.
    Zhan, P., Liu, Y., Wang, Haocai, Wang, C., Xia, M., Wang, N., Cui, W., Xiao, D., Wang, H., 2021. Plant litter decomposition in wetlands is closely associated with phyllospheric fungi as revealed by microbial community dynamics and co-occurrence network. Sci. Total Environ. 753, 142194.https://doi.org/10.1016/j.scitotenv.2020.142194.
    Zhang, H., Cheng, S., Li, H., Fu, K., Xu, Y., 2020. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China. Sci. Total Environ. 741, 140383. https://doi.org/10.1016/j.scitotenv.2020.140383.
    Zhao, H.H., Shen, C.L., 1999. Distribution and formation mechanism of fluorine in shallow groundwater in mining areas of Suzhou. Coal Geol.China 11(3), 39-41 (in Chinese).
    Zheng, L., 1997. Content and distribution of soluble fluorine in soils of the middle and northern parts of Anhui Province. Rural Eco-Environ. 13(3), 25-27 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (200) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return