Citation: | Kai Chen, Qi-meng Liu, Wei-hua Peng, Yu Liu, Zi-tao Wang. 2023: Source apportionment of river water pollution in a typical agricultural city of Anhui Province, eastern China using multivariate statistical techniques with APCS– MLR. Water Science and Engineering, 16(2): 165-174. doi: 10.1016/j.wse.2022.12.007 |
Barakat, A., El Baghdadi, M., Rais, J., Aghezzaf, B., Slassi, M., 2016.Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. International Soil and Water Conservation Research 4, 284-292. https://doi.org/10.1016/j.iswcr.2016.11.002.
|
Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi:An open source software for exploring and manipulating networks. In:Proceeding of International AAAI Conference on Weblogs and Social Media. Association for the Advancement of Artificial Intelligence, San Jose, pp. 361-362.
|
Cao, X., Lu, Y., Wang, C., Zhang, M., Yuan, J., Zhang, A., Song, S., Baninla, Y., Khan, K., Wang, Y., 2019. Hydrogeochemistry and quality of surface water and groundwater in the drinking water source area of an urbanizing region. Ecotoxicol. Environ. Saf. 186, 109628. https://doi.org/10.1016/j.ecoenv.2019.109628.
|
Chattopadhyay, A., Singh, A.P., Singh, S.K., Barman, A., Patra, A., Mondal, B.P., Banerjee, K., 2020. Spatial variability of arsenic in IndoGangetic basin of Varanasi and its cancer risk assessment. Chemosphere 238, 124623. https://doi.org/10.1016/j.chemosphere.2019.124623.
|
Chen, K., Sun, L., Liu, Q., Cao, W., Tang, J., 2019. Quality evaluation and its controlling factor analyses of shallow groundwater in the urban area of Suzhou, Anhui province, China. Fresenius Environ. Bull. 28(9), 6801-6807.
|
Chen, K., Sun, L., Tang, J., 2020. Hydrochemical differences between river water and groundwater in Suzhou, northern Anhui Province, China. Open Geosci. 12(1), 1421-1429. https://doi.org/10.1515/geo-2020-0203.
|
Dai, L., Wang, L., Liang, T., Zhang, Y., Li, J., Xiao, J., Dong, L., Zhang, H., 2019. Geostatistical analyses and co-occurrence correlations of heavy metals distribution with various types of land use within a watershed in eastern Qinghai-Tibet Plateau, China. Sci. Total Environ. 653, 849-859.https://doi.org/10.1016/j.scitotenv.2018.10.386.
|
Gholizadeh, M.H., Melesse, A.M., Reddi, L., 2016. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci.Total Environ. 566-567, 1552-1567. https://doi.org/10.1016/j.scitotenv.2016.06.046.
|
Gulgundi, M.S., Shetty, A., 2019. Source apportionment of groundwater pollution using Unmix and positive matrix factorization. Environ. Process 6, 457-473. https://doi.org/10.1007/s40710-019-00373-y.
|
Guo, Q., Wang, Y., Liu, W., 2008. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China. Environ. Geol. 56, 197-205. https://doi.org/10.1007/s00254-007-1155-2.
|
Hjortenkrans, D., Bergbäck, B., Häggerud, A., 2006. New metal emission patterns in road traffic Environments. Environ. Monit. Assess. 117, 85-98.https://doi.org/10.1007/s10661-006-7706-2.
|
Hou, X.K., Zhang, K., Duan, P.Z., Wang, X., Ta, L., Guo, Y., Xia, R., 2021.Pollution source apportionment of Tuohe River based on absolute principal component scores-multiple linear regression. Res. Environ. Sci. 5, 1-12.https://doi.org/10.13198/j.issn.1001-6929.2021.05.30 (in Chinese).
|
Hu, J., Zhu, C., Long, Y., Yang, Q., Zhou, S., Wu, P., Jiang, J., Zhou, W., Hu, X., 2021. Interaction analysis of hydrochemical factors and dissolved heavy metals in the karst Caohai Wetland based on PHREEQC, cooccurrence network and redundancy analyses. Sci. Total Environ. 770, 145361.https://doi.org/10.1016/j.scitotenv.2021.145361.
|
Jin, Z., Zhang, L., Lv, J., Sun, X., 2021. The application of geostatistical analysis and receptor model for the spatial distribution and sources of potentially toxic elements in soils. Environ. Geochem. Health 43, 407-421. https://doi.org/10.1007/s10653-020-00729-6.
|
Kaiser, H.F., 1974. An index of factorial simplicity. Psychometrika 39, 31-36.https://doi.org/10.1007/BF02291575.
|
Li, C., Gao, X., Wang, Y., 2015. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Sci. Total Environ. 508, 155-165. https://doi.org/10.1016/j.scitotenv.2014.11.045.
|
Li, D., Gao, X., Wang, Y., Luo, W., 2018. Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China.Environ. Pollut. 237, 430-441. https://doi.org/10.1016/j.envpol.2018.02. 072.
|
Li, P., Qian, H., Wu, J., Chen, J., Zhang, Y., Zhang, H., 2014. Occurrence and hydrogeochemistry of fluoride in alluvial aquifer of Weihe River, China.Environ. Earth Sci. 71, 3133-3145. https://doi.org/10.1007/s12665-013-2691-6.
|
Li, W.Q., Wu, J.H., Zhou, C.J., Nsabimana, A., 2021a. Groundwater pollution source identification and apportionment using PMF and PCA-APCS-MLR receptor models in Tongchuan City, China. Arch. Environ. Contam. Toxicol. 81(3), 397-413. https://doi.org/10.1007/s00244-021-00877-5.
|
Li, X., Masuda, H., Liu, C., 2008. Chemical and isotopic compositions of the Minjiang river, a headwater tributary of the Yangtze river. J. Environ. Qual. 37, 409-416. https://doi.org/10.2134/jeq2006.0554.
|
Li, Y.L., Li, P.Y., Liu, L.N., 2021b. Source identification and potential ecological risk assessment of heavy metals in the topsoil of the Weining Plain (northwest China). Expo. Health 348, 1-14. https://doi.org/10.1007/s12403-021-00438-0.
|
Liu, C.W., Lin, K.H., Kuo, Y.M., 2003. Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan.Sci. Total Environ. 313, 77-89. https://doi.org/10.1016/S0048-9697(02)00683-6.
|
Liu, L., Wang, Z., Ju, F., Zhang, T., 2015. Co-occurrence correlations of heavy metals in sediments revealed using network analysis. Chemosphere 119, 1305-1313. https://doi.org/10.1016/j.chemosphere.2014.01.068.
|
Liu, L., Tang, Z., Kong, M., Chen, X., Zhou, C., Huang, K., Wang, Z., 2019.Tracing the potential pollution sources of the coastal water in Hong Kong with statistical models combining APCS-MLR. J. Environ. Manag. 245, 143-150. https://doi.org/10.1016/j.jenvman.2019.05.066.
|
Liu, Y., Guo, H., Yang, P., 2010. Exploring the influence of lake water chemistry on chlorophyll a:A multivariate statistical model analysis. Ecol.Model. 221, 681-688. https://doi.org/10.1016/j.ecolmodel.2009.03.010.
|
Ministry of Ecology and Environment of China (MEEC), 2019. Bulletin of Ecology and Environment in China in 2019. Ministry of Ecology and Environment of China, Beijing (in Chinese).
|
Ministry of Health of the People's Republic of China (MHOC), Standardization Administration of China (SAC), 2007. Standards for Drinking Water Quality (GB/T 5749-2006). China Standards Press, Beijing (in Chinese).
|
Nagaraju, A., Thejaswi, A., Sun, L., 2016. Statistical analysis of high fluoride groundwater hydrochemistry in Southern India:Quality assessment and implications for source of fluoride. Environ. Eng. Sci. 33, 471-477.https://doi.org/10.1089/ees.2015.0511.
|
Pant, P., Harrison, R.M., 2012. Critical review of receptor modelling for particulate matter:A case study of India. Atmos. Environ. 49, 1-12.https://doi.org/10.1016/j.atmosenv.2011.11.060.
|
Postigo, C., Ginebreda, A., Barbieri, M.V., Barceló, D., Martín-Alonso, J., de la Cal, A., Boleda, M.R., Otero, N., Carrey, R., Sol a, V., et al., 2021. Investigative monitoring of pesticide and nitrogen pollution sources in a complex multi-stressed catchment:The lower Llobregat River basin case study (Barcelona, Spain). Sci. Total Environ. 755, 142377. https://doi.org/10.1016/j.scitotenv.2020.142377.
|
Rashid, A., Guan, D.X., Farooqi, A., Khan, S., Zahir, S., Jehan, S., Khattak, S.A., Khan, M.S., Khan, R., 2018. Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan. Sci. Total Environ. 635, 203-215. https://doi.org/10.1016/j.scitotenv.2018.04.064.
|
Ravindra, K., Thind, P.S., Mor, S., Singh, T., Mor, S., 2019. Evaluation of groundwater contamination in Chandigarh:Source identification and health risk assessment. Environ. Pollut. 255, 113062. https://doi.org/10.1016/j.envpol.2019.113062.
|
Reitz, A., Hemric, E., Hall, K.K., 2021. Evaluation of a multivariate analysis modeling approach identifying sources and patterns of nonpoint fecal pollution in a mixed use watershed. J. Environ. Manag. 277, 111413.https://doi.org/10.1016/j.jenvman.2020.111413.
|
Sun, L., Peng, W., Cheng, C., 2016. Source estimating of heavy metals in shallow groundwater based on Unmix model:A case study. Indian J. Geo Mar. Sci. 45, 756-762.
|
Sun, L., 2020. Pollution assessment and source approximation of trace elements in the farmland soil near the trafficway. J. Environ. Eng. Landsc.Manag. 28, 20-27. https://doi.org/10.3846/jeelm.2020.11745.
|
Thurston, G.D., Spengler, J.D., 1985. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 19, 9-25. https://doi.org/10.1016/0004-6981(85)90132-5.
|
Wang, L., Gao, S., Yin, X., Yu, X., Luan, L., 2019. Arsenic accumulation, distribution and source analysis of rice in a typical growing area in north China. Ecotoxicol. Environ. Saf. 167, 429-434. https://doi.org/10.1016/j.ecoenv.2018.10.015.
|
Wang, Y., Zhang, L., Wang, J., Lv, J., 2020. Identifying quantitative sources and spatial distributions of potentially toxic elements in soils by using three receptor models and sequential indicator simulation. Chemosphere 242, 125266. https://doi.org/10.1016/j.chemosphere.2019.125266.
|
World Health Organization (WHO), 2017. Guidelines for Drinking-Water Quality:Fourth Edition Incorporating the First Addendum. World Health Organization, Geneva.
|
Wu, W., 2016. Hydrochemistry of inland rivers in the north Tibetan Plateau:Constraints and weathering rate estimation. Sci. Total Environ. 541, 468-482. https://doi.org/10.1016/j.scitotenv.2015.09.056.
|
Wu, W., Zheng, H., Yang, J., Luo, C., Zhou, B., 2013. Chemical weathering, atmospheric CO2 consumption, and the controlling factors in a subtropical metamorphic-hosted watershed. Chem. Geol. 356, 141-150. https://doi.org/10.1016/j.chemgeo.2013.08.014.
|
Xiao, R., Guo, D., Ali, A., Mi, S., Liu, T., Ren, C., Li, R., Zhang, Z., 2019.Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils:A case study in Hanzhong, Shaanxi, China. Environ. Pollut. 248, 349-357. https://doi.org/10.1016/j.envpol.2019.02.045.
|
Xu, Z., Xu, J., Yin, H., Jin, W., Li, H., He, Z., 2019. Urban river pollution control in developing countries. Nat. Sustain. 2(3), 158-160. https://doi.org/10.1038/s41893-019-0249-7.
|
Yang, J., Holbach, A., Wilhelms, A., Krieg, J., Qin, Y., Zheng, B., Zou, H., Qin, B., Zhu, G., Wu, T., Norra, S., 2020. Identifying spatio-temporal dynamics of trace metals in shallow eutrophic lakes on the basis of a case study in Lake Taihu, China. Environ. Pollut. 264, 114802. https://doi.org/10.1016/j.envpol.2020.114802.
|
Zhai, Y., Zheng, F., Zhao, X., Xia, X., Teng, Y., 2019. Identification of hydrochemical genesis and screening of typical groundwater pollutants impacting human health:A case study in northeast China. Environ. Pollut. 252, 1202-1215. https://doi.org/10.1016/j.envpol.2019.05.158.
|
Zhan, P., Liu, Y., Wang, Haocai, Wang, C., Xia, M., Wang, N., Cui, W., Xiao, D., Wang, H., 2021. Plant litter decomposition in wetlands is closely associated with phyllospheric fungi as revealed by microbial community dynamics and co-occurrence network. Sci. Total Environ. 753, 142194.https://doi.org/10.1016/j.scitotenv.2020.142194.
|
Zhang, H., Cheng, S., Li, H., Fu, K., Xu, Y., 2020. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China. Sci. Total Environ. 741, 140383. https://doi.org/10.1016/j.scitotenv.2020.140383.
|
Zhao, H.H., Shen, C.L., 1999. Distribution and formation mechanism of fluorine in shallow groundwater in mining areas of Suzhou. Coal Geol.China 11(3), 39-41 (in Chinese).
|
Zheng, L., 1997. Content and distribution of soluble fluorine in soils of the middle and northern parts of Anhui Province. Rural Eco-Environ. 13(3), 25-27 (in Chinese).
|
Jacky Cao, Xiaoli Liu, Xiang Su, Jonas Eilertsen Hædahl, Thomas Berg Fjellestad, Donjete Haziri, André Hoang-An Vu, Jari Koskiaho, Satu Maaria Karjalainen, Anna-kaisa Ronkanen, Sasu Tarkoma, Pan Hui. 2024: Head-mounted display-based augmented reality for water quality visualisation. Water Science and Engineering, 17(3): 236-248. doi: 10.1016/j.wse.2023.12.002 | |
Qin Qian, Mengjie He, Frank Sun, Xinyu Liu. 2024: Monitoring and evaluation of the water quality of the Lower Neches River, Texas, USA. Water Science and Engineering, 17(1): 21-32. doi: 10.1016/j.wse.2023.10.002 | |
Rui-hua Nie, Qi-hang Zhou, Wen-jie Li, Xing-nian Liu, Gang Xie, Lu Wang. 2023: Impact of backwater on water surface profile in curved channels. Water Science and Engineering, 16(3): 295-301. doi: 10.1016/j.wse.2023.04.006 | |
Nur Azalina Suzianti Feisal, Noor Haziqah Kamaludin, Muhammad Firdaus Abdullah Sani, Dayang Khairulnisa Awang Ahmad, Mohd Azwan Ahmad, Nur Faiza Abdul Razak, Tengku Nilam Baizura Tengku Ibrahim. 2023: Anthropogenic disturbance of aquatic biodiversity and water quality of an urban river in Penang, Malaysia. Water Science and Engineering, 16(3): 234-242. doi: 10.1016/j.wse.2023.01.003 | |
Ahsan Shah, Arun Arjunan, Ahmad Baroutaji, Julia Zakharova. 2023: A review of physicochemical and biological contaminants in drinking water and their impacts on human health. Water Science and Engineering, 16(4): 333-344. doi: 10.1016/j.wse.2023.04.003 | |
Zhi-lin Wang, Mahmood Sadat-Noori, William Glamore. 2022: Groundwater discharge drives water quality and greenhouse gas emissions in a tidal wetland. Water Science and Engineering, 15(2): 141-151. doi: 10.1016/j.wse.2022.02.005 | |
Arafat Rahman, Ishrat Jahanara, Yeasmin Nahar Jolly. 2021: Assessment of physicochemical properties of water and their seasonal variation in an urban river in Bangladesh. Water Science and Engineering, 14(2): 139-148. doi: 10.1016/j.wse.2021.06.006 | |
Joan Cecilia Casila, Gubash Azhikodan, Katsuhide Yokoyama. 2020: Quantifying water quality and flow in multi-branched urban estuaries for a rainfall event with mass balance method. Water Science and Engineering, 13(4): 317-328. doi: 10.1016/j.wse.2020.12.002 | |
Armin Azad, Hojat Karami, Saeed Farzin, Sayed-Farhad Mousavi, Ozgur Kisi. 2019: Modeling river water quality parameters using modified adaptive neuro fuzzy inference system. Water Science and Engineering, 12(1): 45-54. doi: 10.1016/j.wse.2018.11.001 | |
Charles S. Melching. 2018: Application of a water quality model for determining instream aeration station location and operational rules: A case study. Water Science and Engineering, 11(1): 8-16. doi: 10.1016/j.wse.2017.09.005 | |
Guo-qing Wang, Jian-yun Zhang, Yue-ping Xu, Zhen-xin Bao, Xin-yue Yang. 2017: Estimation of future water resources of Xiangjiang River Basin with VIC model under multiple climate scenarios. Water Science and Engineering, 10(2): 87-96. doi: 10.1016/j.wse.2017.06.003 | |
Chun-ye WANG, Bin ZHOU, Bei HUANG. 2015: A continuing 30-year decline in water quality of Jiaojiang Estuary, China. Water Science and Engineering, 8(1): 20-29. doi: 10.1016/j.wse.2015.01.007 | |
Zi-zhen Zhou, Ting-lin Huang, Wei-xing Ma, Yang Li, Kang Zeng. 2015: Impacts of water quality variation and rainfall runoff on Jinpen Reservoir, in Northwest China. Water Science and Engineering, 8(4): 301-308. doi: 10.1016/j.wse.2015.12.003 | |
Xiao-kang XIN, Ke-feng LI, Brian FINLAYSON, Wei YIN. 2015: Evaluation, prediction, and protection of water quality in Danjiangkou Reservoir, China. Water Science and Engineering, 8(1): 30-39. doi: 10.1016/j.wse.2014.11.001 | |
Amina R. LODHI, Kumud ACHARYA. 2014: Detention basins as best management practices for water quality control in an arid region. Water Science and Engineering, 7(2): 155-167. doi: 10.3882/j.issn.1674-2370.2014.02.004 | |
Qing-hua ZHANG, Yan-fang DIAO, Jie DONG. 2014: Impacts of water surface area of watershed on design flood. Water Science and Engineering, 7(1): 41-48. doi: 10.3882/j.issn.1674-2370.2014.01.005 | |
Zheng GONG, Chang-kuan ZHANG, Cheng-biao ZUO, Wei-deng WU. 2011: Sediment transport following water transfer from Yangtze River to Taihu Basin. Water Science and Engineering, 4(4): 431-444. doi: 10.3882/j.issn.1674-2370.2011.01.007 | |
Sameer SHADEED, Jens Lange. 2010: Rainwater harvesting to alleviate water scarcity in dry conditions: A case study in Faria Catchment, Palestine. Water Science and Engineering, 3(2): 132-143. doi: 10.3882/j.issn.1674-2370.2010.02.002 | |
Xi LI, Yi-gang WANG, Su-xiang ZHANG. 2009: Numerical simulation of water quality in Yangtze Estuary. Water Science and Engineering, 2(4): 40-51. doi: 10.3882/j.issn.1674-2370.2009.04.004 | |
Sun Dongpo, Lu Ruili, Song Yongjun, Yan Jun. 2008: Impact of hydroelectric projects on river environment: Analysis of water quality changes in Ningxia Reach of Yellow River. Water Science and Engineering, 1(2): 66-75 . doi: 10.3882/j.issn.1674-2370.2008.02.007 |
1. | Sukarjo, Yustika, R.D., Handayani, C.O., Yanti, D. et al. Risk assessment for non-carcinogenic effect posed by sulfates in water on the health of residents around The Sumpur River, West Sumatra-Indonesia. Toxicology Reports, 2025, 14: 101921. doi:10.1016/j.toxrep.2025.101921 | |
2. | Nallakaruppan, M.K., Gangadevi, E., Shri, M.L. et al. Reliable water quality prediction and parametric analysis using explainable AI models. Scientific Reports, 2024, 14(1): 7520. doi:10.1038/s41598-024-56775-y | |
3. | Luo, M., Liu, M., Zhang, S. et al. Mining soil heavy metal inversion based on Levy Flight Cauchy Gaussian perturbation sparrow search algorithm support vector regression (LSSA-SVR). Ecotoxicology and Environmental Safety, 2024, 287: 117295. doi:10.1016/j.ecoenv.2024.117295 | |
4. | Angeles, M., Altamirano, J.C., Juarez-Contreras, L. et al. Ecological quality of the Jucusbamaba River, a high Andean urban river in northeastern Peru. Environmental Advances, 2024, 17: 100584. doi:10.1016/j.envadv.2024.100584 | |
5. | Chrapkiewicz, K., Lipp, A.G., Barron, L.P. et al. Apportioning sources of chemicals of emerging concern along an urban river with inverse modelling. Science of the Total Environment, 2024, 933: 172827. doi:10.1016/j.scitotenv.2024.172827 | |
6. | Chen, Y., Peng, W., Lin, M. et al. Seasonal variations and water chemical control mechanism of water quality in a suburban river near a coal city: a case study in the Xinbian River of Suzhou City, Anhui Province, China. Water Practice and Technology, 2024, 19(3): 874-886. doi:10.2166/wpt.2024.053 | |
7. | Zhang, W., Yu, X., Xue, H. et al. Characteristics of water quality and pollution source apportionment in wet season and dry season based on absolute principal component score-multiple linear regression in Guangdong section of Jiuzhou River | [基于 APCS-MLR 模型的九洲江广东段不同水期水质变化特征及污染来源解析]. Journal of Agro-Environment Science, 2024, 43(2): 401-410. doi:10.11654/jaes.2023-0424 | |
8. | Rodríguez Núñez, V.A., Orgaz-Agüera, F. Polluting load from the city of Santiago de los Caballeros (Dominican Republic) to the Yaque del Norte River. A longitudinal study | [Carga contaminante de la ciudad de Santiago de los Caballeros (República Dominicana) al Río Yaque del Norte. Un estudio longitudinal]. Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology, 2023. doi:10.18687/laccei2023.1.1.432 |